A national science & engineering cloud

funded by the National Science Foundation
Award #ACI-1445604
What is Jetstream?

- NSF’s first cloud dedicates top support for science and engineering research across all areas of activity supported by the NSF.
- Jetstream will be a user-friendly cloud environment designed to give researchers and research students access to interactive computing and data analysis resources “on demand.”
- It will provide a user-selectable library of virtual machines that users can select from to do their research.
- Software creators and researchers will also be able to create their own customized virtual machines -or- their own “private computing system” within Jetstream.
- It will enable countless discoveries across disciplines such as biology, atmospheric science, economics, network science, observational astronomy, and social sciences.
- Two especially important biology platforms will be supported – iPlant and Galaxy.
What does the name mean? And is it really a cloud?

• Name
 – In the atmosphere the Jetstream lies at the border of two different air masses
 – The Jetstream system stands at the border of the existing NSF-funded XD program and advanced cyberinfrastructure resources and users who have not previously used such NSF funded infrastructure before.

• Yep, it’s really a cloud. Software layers:
 – Atmosphere interface
 – KVM
 – OpenStack
 – CentOS Linux
Science Domains and Users

• Biology
• Earth Science/Polar Science
• Field Station Research
• Geographical Information Systems
• Network Science
• Observational Astronomy
• Social Sciences

Jetstream will be particularly focused on researchers working in the “long tail” of science with born digital data.

Enabling analysis of field-collected empirical data on the impact and effects of global climate change will be one of the specific foci of Jetstream.

• Whatever you do
21st century workforce development

- Jetstream will include virtual Linux desktops and applications specifically aimed to enable research and research education at small colleges and universities including HBCUs (Historically Black Colleges and Universities), MSIs (Minority Serving Institutions), Tribal colleges, and higher-ed institutions in EPSCoR States
- Jetstream will also support deployment of user-friendly Science Gateways
Jetstream Hardware Components

<table>
<thead>
<tr>
<th>Jetstream Site</th>
<th>#CPUs</th>
<th># Physical Cores</th>
<th>PFLOPS</th>
<th>Total RAM (GB)</th>
<th>Node Local Storage (TB)</th>
<th>Secondary Storage (TB)</th>
<th>Connection to Internet2 (Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Systems</td>
<td>IU</td>
<td>640</td>
<td>7,680</td>
<td>0.258</td>
<td>40,960</td>
<td>640</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>TACC</td>
<td>640</td>
<td>7,680</td>
<td>0.258</td>
<td>40,960</td>
<td>640</td>
<td>960</td>
</tr>
<tr>
<td>Test & Development System</td>
<td>Arizona</td>
<td>32</td>
<td>384</td>
<td>0.013</td>
<td>2,048</td>
<td>32</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,312</td>
<td>15,744</td>
<td>0.529</td>
<td>83,968</td>
<td>1,312</td>
<td>2,112</td>
</tr>
</tbody>
</table>
News for software developers

- Jetstream is *enabling* cyberinfrastructure
- RESTful APIs
- You build, package, deploy
- Users run on NSF-funded hardware
- Can leverage Globus technology for data movement and authentication
Jetstream Deployment Partner Organizations

A seasoned team of organizations and experts:

- University of Texas Austin (TACC)
- University of Chicago (Argonne National Lab)
- University of Arizona
- University of Texas at San Antonio (Open Cloud Lab)
- Johns Hopkins University
- Penn State University
Indiana University – Lead

- Dr. Craig Stewart, Principal Investigator
- Site for Dell production hardware
- Primary data storage facility
- IU School of Informatics & Computing faculty participants:
 - Dr. Beth Plale – Hathi Trust Research Center applications; Big Data
 - Dr. Katy Börner – Network science applications
 - Dr. Volker Brendel – Bioinformatics, computational science education
- IUPUI Computer & Information Science faculty participants:
 - Dr. Fengguang Song – CPU- and node- level performance
University of Texas Austin – Texas Advanced Computing Center

- Dr. Matthew Vaughn, Co-Principal Investigator
- Site for Dell production hardware
- Primary data storage facility
University of Chicago – Computation Institute

- Dr. Ian Foster, Co-Principal Investigator
- Integrate Globus services into Jetstream
University of Arizona

- Dr. Nirav Merchant, Co-Principal Investigator
- Dell hardware test/development site
- Lead Atmosphere implementation
- Bryan Heidorn participating in VMs related to field research stations
The University of Texas at San Antonio

- Dr. Paul Rad, Open Cloud Lab
- OpenStack software integration for cloud environment
Johns Hopkins University & Penn State University

- Dr. James Taylor, Co-Principal Investigator (JHU)
- Dr. Anton Nekrutenko, PSU
- Lead implementation of Galaxy software
Jetstream Application & Outreach Collaborators

- Cornell University – Ms. Susan Mehringer, Lead. Cornell® Virtual Workshops about Jetstream and applications running on jetstream.
- University of Arkansas at Pine Bluff – Dr. Jesse Walker, lead. cybersecurity education, Minority Serving Education outreach
- University of Hawaii – Dr. Gwen Jacobs, lead. EPSCoR early adopter/user. Jacobs will chair Science Advisory Board
- National Snow and Ice Data Center (NSIDC) – Dr. Ron Weaver, lead. Data retrieval from NSIDC, application integration with ice sheet analysis applications
- University of North Carolina, Odum Center – Dr. Thomas Carsey, lead. Data retrieval from Dataverse Network
- National Center for Genome Analysis at Indiana University – providing genome analysis software. Includes TACC, PSC, and SDSC as partners
Questions?

• Questions can be e-mailed to pti@iu.edu
• Visit the project website - pti.iu.edu/jetstream