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1Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
2Physics Department, Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA

3Physics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 30 December 2009; published 25 March 2010)

Field theories with spontaneous Lorentz violation involving an antisymmetric 2-tensor are studied. A

general action including nonminimal gravitational couplings is constructed, and features of the Nambu-

Goldstone and massive modes are discussed. Minimal models in Minkowski spacetime exhibit dualities

with Lorentz-violating vector and scalar theories. The post-Newtonian expansion for nonminimal models

in Riemann spacetime involves qualitatively new features, including the absence of an isotropic limit.

Certain interactions producing stable Lorentz-violating theories in Minkowski spacetime solve the

renormalization-group equations in the tadpole approximation.
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I. INTRODUCTION

Among the simpler field theories in Minkowski space-
time are ones built from p-forms. These include electro-
dynamics, which is the Abelian gauge theory of a 1-form,
and field theories constructed with antisymmetric
p-tensors. The predominant examples of the latter include
models with a gauge-invariant kinetic term for an antisym-
metric 2-tensor, sometimes called the notoph [1] or the
Kalb-Ramond field [2]. These theories have some elegant
properties, including dualities to other p-form theories
[1–3].

In this work, we consider Lorentz-violating field theo-
ries with an antisymmetric 2-tensor, including models
coupled to gravity. In a generic Lagrange density, terms
can be constructed that explicitly violate Lorentz symme-
try by forming observer invariants from tensor operators
and c-number coefficients. However, explicit breaking is
generically incompatible with the Bianchi identities in
Riemann geometry and hence is problematic for theories
with gravity [4]. A viable alternative is spontaneous
Lorentz violation, in which a potential term drives the
development of a nonzero vacuum value for a tensor field
[5]. In theories of this type, the Lagrange density is Lorentz
invariant, but the presence of the tensor vacuum value
means the physics can display Lorentz breaking. Here,
our focus is on theories with spontaneous Lorentz violation
triggered by a potential for an antisymmetric 2-tensor field.

Spontaneous Lorentz violation triggered by a potential
for an arbitrary tensor field is accompanied by certain
generic features. Massless Nambu-Goldstone (NG) modes
[6] emerge that are associated with field fluctuations along
the broken Lorentz generators [7]. When a smooth poten-
tial drives the Lorentz breaking, massive modes can also
appear [8]. The role of the NG and massive modes is
central to the physical content of a field theory with spon-
taneous Lorentz violation. Some of their properties are
generic to any field theory, while others depend on the

specific field content and structure of the action. One goal
here is to apply this work to theories based on an antisym-
metric 2-tensor field, establishing some basic properties of
the corresponding NG and massive modes.
Another motivation for this work stems from the possi-

bility of novel experimental signals for Lorentz violation
involving gravitational couplings. Recent years have seen
extensive tests of Lorentz symmetry in Minkowski space-
time [9], but the scope of searches involving gravitational
couplings remains comparatively limited. Dominant cur-
vature couplings involving Lorentz violation are controlled
by three coefficient fields, conventionally denoted as s��,
t����, and u [4]. Constraints on some s�� coefficients have
been attained using lunar laser ranging [10] and atom
interferometry [11], and numerous other experimental
and observational signals from these couplings can arise
at the post-Newtonian level [12]. However, to date no
gravitational field theory has been constructed to yield
nonzero t���� coefficients. We show here that a compara-
tively simple coupling of this type can appear in theories
involving gravitational couplings to an antisymmetric 2-
tensor. The post-Newtonian expansion is affected in a
purely anisotropic way, offering a qualitatively distinct
source of signals for Lorentz violation.
In Minkowski spacetime, spontaneous Lorentz violation

arises whenever the potential for the interactions has a
nontrivial stable extremum. An interesting issue is the
behavior of the Lorentz-violating interactions under quan-
tum corrections. In certain vector models with spontaneous
Lorentz violation, nontrivial potentials solve the
renormalization-group (RG) equations in the tadpole ap-
proximation [13]. Part of the present work revisits this
possibility in the context of a minimal theory with an
antisymmetric 2-tensor. We investigate the RG flow in
the tadpole approximation and obtain analytical solutions
for the potential. All the nontrivial stable potentials that
result describe theories with spontaneous Lorentz
violation.
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The organization of this work is as follows. We begin in
Sec. II with the basic construction of the field theory,
including the gravitational couplings. Some general fea-
tures of the potential and consequences of the spontaneous
Lorentz breaking are discussed. In Sec. III, properties of
minimal models in Minkowski spacetime are established,
including correspondences to dual theories. Section IV
focuses on gravitational couplings and their consequences
for post-Newtonian physics. The field equations are ob-
tained, linearization is performed in a Minkowski back-
ground, and the post-Newtonian metric is obtained at third
order. In Sec. V, we return to the minimal model in
Minkowski spacetime and implement the tadpole approxi-
mation for the RG equations, obtaining solutions for the
potential. A summary is provided in Sec. VI. Throughout
this work, we adopt the conventions of Ref. [4].

II. FIELD THEORY

In this section, the action for an antisymmetric 2-tensor
in four-dimensional Riemann spacetime is considered.
Some definitions are introduced, and basic properties of
the field theory are summarized. We construct the non-
minimal gravitational couplings and discuss some general
features associated with the potential driving spontaneous
Lorentz violation.

A. Setup

The fundamental field of interest in this work is an
antisymmetric 2-tensor, denoted B�� ¼ �B��. It is con-

venient to introduce the dual tensor B��, defined by

B �� � 1
2�����B

��; (1)

where ����� is the totally antisymmetric Levi-Civita ten-

sor. The covariant derivative of B�� is denoted D�B��.

This work considers Riemann spacetimes, and the cova-
riant derivative is constructed with the Levi-Civita connec-
tion. The generalization to the Cartan connection and the
corresponding Riemann-Cartan spacetimes with torsion
[14] is of potential interest, although current experimental
constraints [15] suggest nonzero torsion components are
likely to have at most a limited phenomenological impact.

A useful combination of derivatives is the totally anti-
symmetric field-strength tensor H���, given by

H��� ¼ @�B�� þ @�B�� þ @�B�� (2)

and its dual

H � � 1
6�����H

���: (3)

The field strength H��� can be viewed as the components

of an exact 3-form field H constructed via the exterior
derivative from the 2-form B associated with B��.

Covariant derivatives can also be used in Eq. (2) because
the connection coefficients cancel in Riemann spacetime.
The field strength H��� satisfies the identity

@�H��� � @�H��� þ @�H��� � @�H��� ¼ 0; (4)

which follows because an exact 3-form is closed. Again,
covariant derivatives can be used in this expression instead.
The field strengthH��� is invariant under a gauge trans-

formation of B�� given by

B�� ! B�� þ @��� � @���; (5)

which represents a shift of B by an exact 2-form. The gauge
parameter�� has four components, but the transformation

involves only three independent effects because the shift

�� ! �� þ @�� (6)

leaves Eq. (5) unchanged. This latter shift represents a
subsidiary gauge transformation involving an exact 1-
form.
The action for the theory including gravitational and

matter sectors can be written as

S ¼
Z

d4xeðLg þLM þLB þLVÞ; (7)

where e is the metric determinant and the Lagrange density
eL is split into four pieces, corresponding to the pure-
gravity sector eLg, the matter sector eLM, the B�� kinetic

term eLB, and the potential term eLV . For our purposes, it
suffices for eLg to adopt the usual Einstein-Hilbert action

of general relativity with cosmological constant �,

eLg ¼ e

2�
ðR� 2�Þ; (8)

where � ¼ 8�GN with GN the Newton gravitational con-
stant. Also, the specific content of the matter-sector
Lagrange density eLM is secondary here, and in much of
the analysis to follow it suffices to assume vanishing matter
couplings to B��. When useful, a matter coupling to B��

can be introduced in the form

eLM � �1
2eB��j

��
B ; (9)

where j
��
B is the corresponding current. This coupling is

analogous to that of the Kalb-Ramond current in string
theory [2]. For certain actions of the form (7), including
ones in Minkowski spacetime that are invariant under the
gauge transformation (5), the current j��

B is conserved.
Note also that a nonzero vacuum value for B�� can lead

to terms in the effective action of the type found in the
minimal standard-model extension (SME) [16]. For ex-
ample, a current j

��
B ¼ �c���c generates an SME coeffi-

cient of the H�� type.

B. Kinetic term

By definition, the kinetic term eLB in the action (7)
determines the dynamics of B��, including its nonminimal

couplings to gravity. In this work, we restrict attention to
kinetic terms of second order in derivatives of B��. For
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some of the analysis, it is useful to allow also nonminimal
nonderivative gravitational couplings that are linear in the
curvature tensor. Higher-order derivative couplings asso-
ciated with Lorentz violation could in principle be incor-
porated, at least at the level of effective field theory [17]. A
classification of all derivative operators might be achieved
following the methodology adopted for Lorentz-violating
electrodynamics [18], but this lies beyond our present
scope.

In the present section, we provide the general Lagrange
density LB containing all independent quadratic kinetic
terms for the antisymmetric tensor B��, along with all

independent nonminimal nonderivative couplings to grav-
ity that are linear in the curvature. It is convenient to split
the Lagrange density LB into two parts,

eLB ¼ eLBB þ eLBB; (10)

where the parity-even termLBB involves quadratic expres-
sions in B�� and the parity-odd term LBB involves the

product of B�� and B��.

The general form of the parity-even term can be written
as

eLBB ¼ �1eH���H
��� þ �2eðD�B

��ÞðD�B
�
�Þ

þ �3eB
��B��R���� þ �4eB

��B�
�R��

þ �5eB
��B��R; (11)

where �1, �2, �3, �4, and �5 are arbitrary constants. Note
that only the first term in this expression is invariant under
the gauge transformation (5). In constructing Eq. (11), we
can omit the two scalars ðD�B��ÞðD�B��Þ and ðD�B

��Þ�
ðD�B��Þ because they are equivalent to other terms via the

identity

H���H
��� ¼ 3ðD�B

��ÞðD�B��Þ þ 6ðD�B��ÞðD�B��Þ
(12)

and the integral relation

Z
d4xe

�
ðD�B��ÞðD�B��Þ þ ðD�B

��ÞðD�B
�
�Þ

� B��B�
�R�� þ 1

2
B��B��R����

�
¼ 0: (13)

This last relation holds up to surface terms, which leave the
equations of motion unaffected.

The general form of the parity-odd term involving both
B�� and its dual B�� can be written as

eLBB ¼ �1eðD�B��ÞðD�B��Þ þ �2eðD�B
�
�ÞðD�B

��Þ
þ �3eB

��B��R���� þ �4eB��B
��R; (14)

where �1, �2, �3, and �4 are arbitrary constants. Note that
the nonminimal curvature-coupling term B��B�

�R�� is

proportional to the �4 term in Eq. (14) via the identity

B�
�B�� ¼ 1

4g��ðB	
B
	
Þ: (15)

Also, the scalar ðD�B��ÞðD�B��Þ is equivalent to terms in

Eq. (14) via the integral relation

Z
d4xe

�
ðD�B��ÞðD�B��Þ þ ðD�B

�
�ÞðD�B

��Þ

� 1

4
B��B

��Rþ 1

2
B��B��R����

�
¼ 0: (16)

Terms quadratic in the dual tensor B�� can also be

considered, including ones involving linear curvature cou-
plings. However, all such terms are equivalent to combi-
nations of ones in the parity-even Lagrange density (11).
Some useful identities are

ðD�B��ÞðD�B��Þ ¼ 1
2ðD�B��ÞðD�B��Þ
� ðD�B

�
�ÞðD�B

��Þ;
B��B��R���� ¼ �B��B��R���� þ 4B��B�

�R��

� B��B��R;

B��B�
� ¼ B��B�

� � 1
2g

��B	
B	
: (17)

Using these identities, LBB can be rewritten as an expres-
sion involving terms quadratic in B��.

One generalization of the above construction involves
replacing the constants �1; . . . ; �4 by arbitrary functions of
B��. This idea has recently been used to identify an

extension to the class of gravitationally coupled vector
theories known as bumblebee models [19]. A similar ex-
tension of the models discussed in this work may also exist.

C. Potential term

The term eLV in the action (7) incorporates the potential
V triggering spontaneous symmetry breaking. We assume
that V drives the formation of a nonzero vacuum value

hB��i ¼ b��; (18)

which breaks local Lorentz and diffeomorphism symmetry.
This implies a vacuum value for the dual field B��,

hB��i ¼ b�� � 1
2�����b

��: (19)

In general, the potential V could include dependence on
B��, on covariant derivatives of B��, on the Levi-Civita

tensor �����, and on the metric g��. A pure-derivative

potential has been investigated for the vector field in cer-
tain bumblebee models [20], and an analogous treatment
could be considered here. However, for simplicity we
disregard derivative couplings in V in this work.
Since the Lagrange density is an observer-scalar density,

the dependence of the potential V on B�� can arise only

through the invariants B��B
�� and B��B

��. Note that

neither of these terms is invariant under the gauge trans-
formation (5). Following the approach of Ref. [8], we
introduce
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X1 � B��B
�� � x1; X2 � B��B

�� � x2; (20)

and we write the potential as

V ¼ VðX1; X2Þ; (21)

where hVi ¼ 0 is assumed. In Eq. (20), x1 and x2 are two
real numbers representing the vacuum values of the invar-
iants,

x1 � hB��B
��i ¼ hg��ihg��ib��b��;

x2 � hB��B
��i ¼ hg��ihg��ib��b��;

(22)

where hg��i is the vacuum value of the inverse metric.
For certain purposes, it is convenient to split b�� into the

independent components b0j and bjk and to introduce

spatial vectors ~e and ~b defined by

ej ¼ �b0j; bj ¼ 1
2�

jklbkl; (23)

in analogy with the separation of the antisymmetric field
strength into electric and magnetic vector fields in
Maxwell electrodynamics. Under some circumstances, it
is also convenient to perform observer rotation and boost
transformations to attain a special observer frame in which
b�� takes a simple block-diagonal form. This can be

achieved in a local Lorentz frame in Riemann spacetime
or everywhere in Minkowski spacetime. Provided at least
one of x1 and x2 is nonzero, the special form can be chosen
as

b�� ¼
0 �a 0 0
a 0 0 0
0 0 0 b
0 0 �b 0

0
BBB@

1
CCCA; (24)

where a and b are real numbers. In this special frame, ~e ¼
ða; 0; 0Þ and ~b ¼ ðb; 0; 0Þ, while x1 ¼ �2ða2 � b2Þ and
x2 ¼ 4ab. If both x1 and x2 vanish, then the replacements
b23 ¼ �b32 ! 0, b13 ¼ �b31 ! �a can be implemented
in the above block-diagonal form instead. Note that b�� in

the special frame is determined by no more than two non-
zero real numbers, an improvement over the six real num-
bers required for the generic case. However, most of the
analysis in this work makes no assumptions about the
specific form of the vacuum value b��.

Adopting for the potential V the partial derivative nota-
tion

Vm ¼ @V

@Xm

; Vmn ¼ @2V

@Xm@Xn

; . . . (25)

with m; n; . . . ¼ 1; 2; . . . , the extremal conditions deter-
mining the vacuum are

Vm ¼ 0 ðvacuum conditionÞ: (26)

SinceXm ¼ 0 in the vacuum, the potential can be expanded
about the vacuum as the series

VðX1; X2Þ ¼ 1
2�mnXmXn þ 1

6�mnpXmXnXp þ � � � ; (27)

where

�mn ¼ Vmnð0; 0Þ; �mnp ¼ Vmnpð0; 0Þ; . . . (28)

are constants. A simple example of this type is provided by
the smooth diagonal quadratic form with only �11 and �22

nonzero. Note that the values of the constants (28) are
relevant to the issue of overall stability of a given vacuum,
which in general is an involved question [21] and as yet
remains only partially resolved even for comparatively
simple vector-based models [22]. Another useful class of
potentials involves linear or quadratic Lagrange multipliers
[8]. However, for most of the analysis to follow, specifying
the form of V is unnecessary.
In the theory (7), the field excitations of primary interest

are the fluctuations in g�� and B��. The metric fluctuation

h�� is given by

g�� ¼ hg��i þ h��; (29)

where hg��i is the vacuum metric, while B�� can be

expanded as

B�� ¼ b�� þ B
≁

��: (30)

Note that the alternative expansion B�� ¼ hB��i þ ~B��

could in principle be adopted instead [8].
In Minkowski spacetime or in an asymptotically flat

background, we can choose coordinates with

hg��i ¼ ��� ðasymptotically flatÞ: (31)

For these cases, it is often convenient to introduce the
simplifying assumption

@�b�� ¼ 0: (32)

This preserves translation invariance and hence conserva-
tion of energy and momentum for the fluctuation fields h��

and B
≁

��. It also implies all solitonic solutions are disre-

garded. Note that imposing the conditions (31) and (32)
removes most of the freedom associated with observer
general coordinate transformations.

The excitations h�� and B
≁

�� contain a total of 16

modes. The explicit form of the action (7) is required to
establish their complete nature and behavior, including
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whether they are NG, massive, gauge, or spectator modes,
whether they propagate or are auxiliary, and whether the
alternative Higgs mechanism occurs [8].

The NG modes can be identified as the field excitations
that preserve the minimum of the potential. They are there-
fore solutions of the conditions

X1 ¼ X2 ¼ 0 ðNG modesÞ: (33)

Assuming both conditions are imposed by the theory, these
represent two independent constraints to be satisfied by the

six possible virtual Lorentz excitations of B
≁

��. There

could therefore in principle be as many as four Lorentz
NG modes in the theory. Determining which ones propa-
gate as physical massless excitations is of definite interest
because such modes represent long-range forces and can
therefore be expected to have phenomenological implica-
tions. Even if the spontaneous Lorentz breaking occurs at a
large scale such as the Planck mass, resulting in suppressed
massive modes at low energies, the propagating massless
modes can be expected to play a significant role in the
physics. In effect, the propagating Lorentz NGmodes form
the smallest unit of the field B�� carrying relevant dynami-

cal meaning at all scales. We refer to them as ‘‘phon’’
modes, a terminology adapted from phoneme, which is the
smallest unit of language capable of carrying meaning.

In a given model with spontaneous Lorentz breaking
triggered by an antisymmetric 2-tensor field, determining
the number and properties of phon modes is key to estab-
lishing the physical content and phenomenological impli-
cations of the theory. This parallels the situation for
theories with spontaneous Lorentz violation triggered by
a vector or a symmetric 2-tensor, where the NG modes can
play a variety of phenomenologically important roles. For
example, certain gravitationally coupled vector theories
with spontaneous Lorentz violation known as bumblebee
models reproduce the Einstein-Maxwell equations in a
fixed gauge, with the NG modes identified as photon
modes [7,23]. Similarly, in a suitable theory for a symmet-
ric 2-tensor generating spontaneous Lorentz violation, the
NG modes obey the nonlinear Einstein equations in a fixed
gauge and can be identified as gravitons [24,25].
Composite gravitons have been proposed as NG modes
of spontaneous Lorentz violation arising from self-
couplings of vectors [26], fermions [27], or scalars [28],
following related ideas for photons [29]. In some models,
the NG modes can also be interpreted as a new spin-
dependent interaction [30] or as various new spin-
independent forces [31], while in others they can generate
torsion masses via the Lorentz-Higgs effect [7].

In what follows, we show that certain theories with
spontaneous Lorentz breaking triggered by an antisymmet-
ric 2-tensor field contain a phon mode behaving like a
scalar. Since the phon can have nonminimal gravitational
couplings, one intriguing possibility is that it could play a
cosmological role. Cosmologically varying scalars can

produce Lorentz violation associated with varying cou-
plings [32], and we can anticipate that phon modes could
play the cosmological roles of the inflaton associated with
inflation or the various scalar modes proposed to underlie
dark energy. Details of these and other possible phenome-
nological roles for the phon modes are an interesting topic
for future study.
In contrast to the NG modes, the massive modes are

excitations increasing the value of the potential V above its
minimum. It follows that there are two massive modes,
which can be identified with X1 and X2 or with linear
combinations of these quantities. The explicit form of X1

and X2 in terms of h�� and B
≁

�� can be found using

Eq. (20), and their mass matrix is �mn. These modes can
also play a phenomenological role. In gravitationally
coupled bumblebee theories, the massive modes modify
the Newton gravitational potential [8], and even modes
with large masses are likely to affect cosmological dynam-
ics in the very early Universe. Analogous possibilities can
be expected to arise for the massive modes X1 and X2.

III. MINIMAL MODEL

This section discusses some aspects of models with a
gauge-invariant kinetic term. The limit of Minkowski
spacetime, with the conditions (31) and (32) satisfied, is
considered first. For this purpose, we adopt the minimal
Lagrange density,

L min
B;V ¼ � 1

12H���H
��� � V; (34)

and examine its content for various choices of V. We then
consider some simple extensions, including minimal cur-
rent and curvature couplings.

A. Minkowski spacetime

For the analysis, a first-order form of the Lagrange
density (34) is useful. Introduce a vector field A� with

field strength and its dual given by

F�� ¼ @�A� � @�A�;

F �� � 1
2�����F

��:
(35)

Then,Lmin
B;V is equivalent to the first-order Lagrange density

L min
A;B;V ¼ H�A

� � 1
2A�A

� � V (36)

because the field A� is auxiliary and can be removed from

the action, whereupon use of the identity H���H
��� ¼

�6H�H
� recovers Lmin

B;V . Note that this procedure applies

also to the path integral, so the equivalence holds at the
quantum level. Partial integration on the first term shows
that Eq. (36) can also be written as
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L min
A;B;V ¼ 1

2B��F �� � 1
2A�A

� � V: (37)

In this Lagrange density, which is also equivalent to the
minimal theory (34), no derivatives act on the field B��.

Consider first the special case of the minimal model (34)
with V ¼ 0. The resulting Lagrange densityLmin

B;0 is known

to describe a free scalar field [1]. One way to see this is
using the equivalent first-order form [33]. With V ¼ 0 in
Eq. (37), the field B�� acts as a Lagrange multiplier to

enforce F �� ¼ 0. In Minkowski spacetime, this implies

the identity A� � @��. Substitution yields

L min
A;B;0 ¼ �1

2@��@��; (38)

which is the Lagrange density for a free scalar field.
Next, suppose a mass term is added for the field B��, so

that V ¼ m2B��B
��=4. The resulting Lagrange density

(34) is known to describe a massive vector field [1]. This
can also be seen from the first-order form, which becomes

L min
A;B;V ¼ 1

2B��F �� � 1
2A�A

� � 1
4m

2B��B
��: (39)

The presence of the mass term means that B�� now plays

the role of an auxiliary field rather than a Lagrange multi-
plier. Removing B�� from the action and using the identity

F ��F �� ¼ �F��F
�� gives

m2Lmin
A;B;V ¼ �1

4F��F
�� � 1

2m
2A�A

�; (40)

which is the Lagrange density for a massive vector field.
In the context of the present work, we are interested in

the content of the theory (34) when the potential V takes a
form that triggers spontaneous Lorentz breaking. For illus-
trative purposes, consider a potential V ¼ VðX1Þ with non-
zero quadratic coefficient � ¼ �11. This potential depends
only on X1, so the discussion in the previous section
implies at most one massive mode can be expected.

Implementing the expansion (30), the Lagrange density
becomes

L min
B;V ¼ � 1

12H
≁
���H

≁
��� � V

¼ � 1
12H

≁
���H

≁
��� � 1

2�X
2
1 � � � � ; (41)

which yields the equations of motion

@�H
≁
��� � 4�b��X1: (42)

The equivalent first-order Lagrange density is

L min
B;V � 1

2B
≁
��F �� � 1

2A�A
� � V

� 1
2B
≁
��F �� � 1

2A�A
� � 2�ðb��B

≁
��Þ2: (43)

In the last expression, only the leading-order term in B
≁
��

for the potential V is displayed. This is a mass term,
involving the mass matrix

m����� ¼ 8�b��b��: (44)

However, only the single linear combination b��B
≁
�� of the

six independent excitations in B
≁
�� is affected by this term.

For example, in the special observer frame given by
Eq. (24), the mass is associated with a linear combination

of B
≁
01 and B

≁
23, so these field components determine the

massive-mode content of the theory. The other modes
remain massless. This shows that the situation with sponta-
neous Lorentz breaking is intermediate between the two
Lorentz-invariant cases with zero mass and with a conven-
tional mass term.
The presence of the vacuum value b�� defines an ori-

entation in the theory that can be used for projection.
Assuming x1 � 0, we introduce for an antisymmetric 2-
tensor T�� the orthogonal projections

Tk�� ¼ 1

x1
b��T

��b��;

T?�� ¼ T�� � Tk��:
(45)

With this notation, the Lagrange density (43) can be writ-
ten as

Lmin
B;V � 1

2B
≁
?��F

��
? þ 1

2B
≁
k��F k

��

� 1
2A�A

� � 2�x1B
≁
k��B

≁
k��: (46)

This form displays explicitly the intermediate nature of the
minimal model with spontaneous Lorentz violation. In the

expression (46), the projection B
≁
?�� is a Lagrange-

multiplier field that acts to impose the condition

F ?�� � 0 (47)

in parallel with the situation when V ¼ 0. However, the

projection B
≁
jj�� is a massive auxiliary field obeying

B
≁

jj�� � 1

8�x1
F k��; (48)

in analogy with the case leading to Eq. (40). We see that the
term proportional to A�A

� in the Lagrange density (46)

plays a double role, with some combinations of the com-
ponents of A� generating kinetic terms for massless NG

modes while others form a mass term for the massive
mode.

At leading order in B
≁
��, the solutions to Eq. (47) contain

the massless NG modes in the theory, while the massive-
mode content lies in the complement (48). However, ex-
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amination of Eq. (42) reveals that no massive mode prop-
agates at leading order. For example, taking a derivative of
Eq. (42) gives b��@�X1 � 0, and working in the special

frame (24) with nonzero x1 and x2 shows that X1 is a

constant. The result (48) implies F k�� / B
≁
k�� / X1b��,

so it follows that F k�� is a constant. Adopting natural

boundary conditions with X1 ¼ 0, we obtainF �� ¼ 0 and

hence A� ¼ @��. At leading order in B
≁
�� and with these

boundary conditions, the Lagrange density (46) therefore
reduces to a theory of the form (38) describing a single free
phon mode �. In this limit, we see that the phon mode is
the analog of the scalar associated with the massless no-
toph or Kalb-Ramond field [1,2].

Further insight can be obtained by performing a time-

space decomposition on B
≁
��. Define

B
≁
0j ¼ ��j; B

≁
jk ¼ �jkl�

l; (49)

in analogy with the electrodynamic decomposition of the
field strength into its electric and magnetic 3-vector fields.

In terms of ~� and ~�, the Lagrange density (34) becomes

L min
B;V ¼ 1

2ð
_~�þ ~r� ~�Þ2 � 1

2ð ~r � ~�Þ2 � Vð ~�; ~�Þ: (50)

This form of the theory reveals that the only dynamical

object is ~�, while ~� is auxiliary. It follows that at most
three propagating modes can appear in the minimal model.

For V ¼ 0, use of the Helmholtz decompositions ~� ¼
~�t þ ~�l and

~� ¼ ~�t þ ~�l into divergence-free transverse
and curl-free longitudinal parts reveals the expected result

that the curl-free single degree of freedom ~�l propagates a
free scalar field, while the other fields are gauge or de-
couple. If instead the potential V is a conventional mass
term, the three propagating modes are those of a massive
vector. In contrast, for the case of interest here with V
triggering spontaneous Lorentz violation, at most two of

the six modes in B
≁
�� can be massive. For example, work-

ing in the special frame (24), the potential in the illustrative
model (41) becomes

Vð ~�; ~�Þ � 8�ða�1 � b�1Þ2 (51)

at leading order in B
≁
�� and hence in ~� and ~�. This

generates a mass matrix for the components �1 and �1,
with the linear combination a�1 � b�1 representing the
massive mode. The field �1 is auxiliary. Although �1

could in principle be dynamical, it is nonpropagating at

leading order in B
≁
��. Of the remaining 2 degrees of free-

dom in ~�, one is the free phon mode, while the other can be
removed by the residual gauge freedom that leaves invari-
ant the potential (51).

Analogous results are obtained for the minimal model
(34) with more general potential V ¼ VðX1; X2Þ. There can
be up to two massive modes, with masses determined by
the eigenvalues of the mass matrix for X1 and X2. In the
special frame (24), X1 and X2 take the form

X1 ¼ �4a�1 þ 4b�1 � 2 ~�
2 þ 2 ~�

2
;

X2 ¼ �4b�1 � 4a�1 � 4 ~� � ~�:
(52)

Combinations of �1 and �1 therefore represent the mas-

sive modes in the theory. The field ~� is auxiliary and can be
eliminated from the Lagrange density, at least in principle,
leaving only 1 massive degree of freedom. As before, this
massive mode is nonpropagating at leading order. The
issue of whether it propagates at higher orders is an inter-
esting open question but lies beyond our present scope.
This may most conveniently be addressed via the
Hamiltonian formulation and the Dirac procedure for con-
straints [34].

B. Currents and curvature

Next, consider an extension of the theory (34) to include
a coupling to a current j��

B , either specified externally or
formed from fields other than B��. The relevant Lagrange

density becomes

L min
B;V;j ¼ � 1

12H���H
��� � V � 1

2B��j
��
B : (53)

A gauge transformation of the form (5) changes Lmin
B;V;j by

an amount


Lmin
B;V;j ¼ ��@�ðj��

V þ j
��
B Þ; (54)

where the potential current j��
V is defined as

j��
V ¼ 4V1B

�� þ 4V2B
��: (55)

The result (54) represents the obstruction to gauge invari-
ance in the theory. Off-shell invariance is achieved when-
ever the sum of the massive mode and the matter currents is
conserved off shell. This occurs, for example, if the poten-
tial V vanishes and the current j��

B is independently
conserved.
In the present context with spontaneous breaking of

Lorentz symmetry, the potential V is nonvanishing so
gauge invariance is generically lost. However, the NG
modes in the theory satisfy the conditions (26), so j

��
V

vanishes in this sector. The current j
��
V is therefore asso-

ciated with the massive modes. Moreover, in parallel with
the case of classical electrodynamics, it is reasonable to
take the current j��

B to be independently conserved in this
sector,

@�j
��
B ¼ 0 ðNG sectorÞ; (56)
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when the massive modes are constrained to zero. It follows
from Eq. (54) that the NG sector is off shell gauge invariant
under the residual gauge transformations satisfying the
conditions (33). Also, if j��

B is specified externally, then
it is conserved even in the presence of massive modes.
However, if j��

B is constructed from other fields, then it
may be affected by the excitation of massive modes,
whereupon conservation may fail.

Related results emerge on shell. The equation of motion

for B
≁
�� is

@�H
��� ¼ j��

V þ j��
B : (57)

This implies that the total current is conserved on shell,

@�ðj��
V þ j

��
B Þ ¼ 0: (58)

It follows that the variation 
Lmin
B;V;j of the Lagrange density

vanishes on shell, so the gauge-symmetry breaking is an
off-shell effect.

The first-order form of the theory (53) can be written as
the Lagrange density

L min
A;B;V;j ¼ 1

2B��F �� � 1
2A�A

� � V � 1
2B��j

��
B ; (59)

from which the original theory (53) can be recovered by
partial integration on the first term followed by elimination
of the auxiliary field A�, as before. In what follows, it is

convenient to perform a time-space decomposition for j��
B

paralleling the decomposition (49). We introduce vectors
~J, ~K as

j0jB ¼ Jj; jjkB ¼ �jklKl: (60)

Current conservation (56) implies

~r � ~J ¼ 0; ~r� ~K � _~J ¼ 0: (61)

Note these equations are equivalent to the homogeneous

Maxwell equations for the pair ð ~E; ~BÞ ¼ ð ~K;� ~JÞ.
Consider first the Lagrange density (59) with V ¼ 0.

Then, B�� remains a Lagrange-multiplier field as before,

but the associated constraint becomes F �� ¼ jB��. The

solution is A� ¼ 	� þ @��, where 	� is the 4-vector

potential associated with the Maxwell electromagnetic

fields ð ~E; ~BÞ ¼ ð ~K;� ~JÞ. Substitution yields

L min
A;B;V;j ¼ �1

2@��@��þ�j�; (62)

where j� ¼ @�	
�. A term proportional to 	�	

� that is

irrelevant for the dynamics of � has been dropped. This
theory describes a scalar field � interacting with the cur-
rent j�.

If instead the potential in the Lagrange density (59) is
the mass term V ¼ m2B��B

��=4, then B�� is auxiliary.

Removing it from the action yields

m2Lmin
A;B;V;j ¼ �1

4F��F
�� � 1

2m
2A�A

� � A�j
�
A ; (63)

where j�A ¼ �	
��@	jB
�=2. This equation omits the qua-

dratic current-coupling term j
��
B jB��=4, which is irrelevant

for the dynamics of A�. The Lagrange density (63) de-

scribes a massive vector field A� interacting with the

current j�A .
For the case of interest here with V spontaneously break-

ing Lorentz symmetry, we again find the theory contains a
mixture of phon and massive modes. However, these
modes interact with currents, and additional SME-type
couplings can appear. Consider, for example, the illustra-
tive model with V ¼ VðX1Þ approximated by a quadratic
term with coefficient �. Projecting the perpendicular and
parallel components of B��, F ��, and j

��
B according to

Eq. (45) and substituting into Eq. (59) gives the Lagrange
density

Lmin
A;B;V;j � 1

2B
≁
?��ðF ��

? � j��
B?Þ

þ 1
2B
≁
jj��ðF ��

k � j
��
Bk Þ � 2�x1B

≁
jj��B

≁
jj
��

� 1
2A�A

� � 1
2b��j

��
B : (64)

This reveals that the projection B
≁
?�� is a Lagrange-

multiplier field imposing the constraint

F ?�� � j
��
B?; (65)

while the projection B
≁
jj�� is an auxiliary field given by

B
≁
jj�� � 1

8�x1
ðF��

k � j
��
Bk Þ: (66)

As before, the NG modes are contained in the solutions to
Eq. (65), while the massive-mode content is in the comple-
ment (66) and is constrained by current conservation.
Adopting natural boundary conditions for the equations
of motion again leads to X1 ¼ 0. The solution for A� can

be written as A� ¼ 	� þ @��, where � is the phon mode

and 	� is the 4-vector potential for the Maxwell fields

ð ~E; ~BÞ ¼ ð ~K;� ~JÞ. At leading order, the only propagating
mode is the phon. Removing the Lagrange-multiplier and
auxiliary modes from the theory yields the Lagrange den-
sity

L min
A;B;V;j � �1

2@��@��þ�j� � 1
2b��j

��
B � 1

2	�	
�;

(67)

where j� ¼ @�	
�. This describes an interacting phon

along with an SME-type coupling to the current j
��
B and

an induced current-current coupling.
Another interesting extension of the minimal theory (34)

is obtained in passing from Minkowski to Riemann space-
time and adding the Einstein-Hilbert term (8). The relevant
Lagrange density is
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eLmin
R;B;V;j ¼

e

2�
ðR� 2�Þ � 1

12
eH���H

���

� eV � 1

2
eB��j

��
B : (68)

Much of the discussion in Minkowski spacetime remains
valid, but some derivations face obstructions.

The introduction of the vector field A� and the construc-

tion of the equivalent first-order form

eLmin
R;A;B;V;j ¼

e

2�
ðR� 2�Þ þ 1

2
eB��F ��

� 1

2
eA�A

� � eV � 1

2
eB��j

��
B (69)

proceeds as before because the derivatives in H��� can be

taken as covariant and hence the partial integration per-
formed. Global statements obtained from the Lagrange
density become local statements, including the equations
of motion and the results for the current j��

B .
If V ¼ 0 and the topology of the spacetime manifold M

is trivial, the theory describes a scalar field in Riemann
spacetime. However, the solution for A� that leads to this

interpretation is valid only locally if the first cohomology
class H1ðM;RÞ is nonvanishing. This issue is absent if V is
taken as the mass term V ¼ m2B��B

��=4, when the theory

describes a massive vector in Riemann spacetime.
If instead V triggers spontaneous Lorentz breaking, the

vacuum value b�� can vary with spacetime position and

hence have a nontrivial derivative in the general case [4].
The field strength H��� can therefore acquire a nonzero

contribution even when B
≁
�� vanishes. However, this has no

effect on the first-order form (69). For example, perform-
ing the decomposition (45) for the illustrative model with
V ¼ VðX1Þ approximated by a quadratic term yields the
Lagrange density

eLmin
R;A;B;V;j �

e

2�
ðR� 2�Þ þ 1

2
eB
≁
?��ðF��

? � j��
B?Þ

þ 1

2
eB
≁
k��ðF ��

k � j
��
Bk Þ � 2�x1eB

≁
k��B

≁
k
��

� 1

2
eA�A

� � 1

2
eb��j

��
B ; (70)

where b�� may now vary with position. The constraint (65)

still holds, but if H1ðM;RÞ is nontrivial then the general
solution for A� includes all independent closed nonexact 1-

forms with suitable support on the spacetime. The latter
can be viewed as additional topological modes in the
theory, but since these modes are nonexact they cannot
play the role of topological phon modes. There is still only
one phon, which propagates in Riemann spacetime and
interacts with a current that includes a contribution from
the topological modes. In the special case of an asymptoti-
cally flat spacetime with � ¼ 0 and trivial topology, the
condition (32) holds and the topological modes are absent.

At leading order in h��, the phon then propagates in a

Minkowski background with weak-field coupling to the
metric.

IV. NONMINIMAL MODEL

The effects of Lorentz violation on gravity can be char-
acterized in a general way by constructing the effective
field theory for the metric and curvature while allowing
arbitrary Lorentz-violating couplings [4]. This procedure
generates the gravity sector of the SME in Riemann space-
time. At leading order in the curvature, three basic types of
Lorentz-violating couplings arise. Each involves a coeffi-
cient field for Lorentz violation that upon acquiring a
vacuum value generates a Lorentz-violating coupling for
gravity. The theory (7) for the antisymmetric 2-tensor B��

has the interesting feature of containing all three kinds of
couplings, despite being comparatively simple.
In this section, we consider a particular restriction of the

theory (7) that suffices to exhibit all three kinds of cou-
plings. The theory includes some of the nonminimal cur-
vature couplings obtained in Sec. II B. Following the
specification of the Lagrange density, the equations of
motion and energy-momentum conservation law are ob-
tained. The results are linearized and some implications for
the mode content are obtained. We then apply the formal-
ism of Ref. [12] to extract the post-Newtonian metric.

A. Action

At leading order in the curvature, the three basic types of
Lorentz-violating couplings include ones to the traceless
Ricci tensor, the Weyl tensor, and the scalar curvature. The
corresponding SME coefficient fields are conventionally
denoted as s��, t����, and u. We adopt here an extension of
the minimal model of the previous section that suffices to
include all three. It is constructed by adding nonzero
couplings of the �3, �4, and �5 types displayed in
Sec. II B. For simplicity, we assume � ¼ 0 and j��

B ¼ 0
but include a matter Lagrange density LM to act as a
gravitational source. The potential VðX1; X2Þ triggering
spontaneous Lorentz violation is taken to satisfy the vac-
uum condition (26) and to have the expansion (27) involv-
ing the constants �mn.
The chosen Lagrange density can be written in the form

eLnonmin ¼ e

2�
R� 1

12
eH���H

��� � eV þ eLM

þ e

2�
ð�1B

��B��R���� þ �2B
��B�

�R��

þ �3B
��B��RÞ: (71)

For convenience in the analysis to follow, we have ex-
tracted a factor of 2� from the coupling constants �3, �4,
and �5 and relabeled them as �1, �2, and �3.
At the level of the action, the theory (71) implies an

explicit correspondence between B�� and the three SME
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coefficient fields s��, t����, and u. We find

ðsBÞ�� ¼ ð2�1 þ �2ÞðB�
	B

�	 � 1
4g

��B	
B	
Þ;
ðtBÞ���� ¼ 2

3�1ðB��B�� þ 1
2B

��B�� � 1
2B

��B��Þ
� 1

2�1ðg��B�
	B

�	 � g��B�
	B

�	

� g��B�
	B

�	 þ g��B�
	B

�	Þ
þ 1

6�1ðg��g�� � g��g��ÞB	
B	
;

uB ¼ �ð16�1 þ 1
4�2 þ �3ÞB	
B	
:

(72)

The reader is cautioned that the vacuum values of the
coefficient fields implied by these equations differ by
scalings from those that appear in the final linearized
effective Einstein equations [12]. This issue is revisited
in Sec. IVC.

The gravitational field equations follow from the
Lagrange density (71) by varying with respect to g��,

while holding B�� and any matter fields fixed. Explicitly,

we find

G�� ¼ �ðTMÞ�� þ �ðTBÞ��

þ ðT�1
Þ�� þ ðT�2

Þ�� þ ðT�3
Þ��: (73)

The first term on the right-hand side is the matter energy-
momentum tensor. The second term is the contribution to
the energy-momentum tensor arising from the kinetic and
potential terms for B��. It is given by

ðTBÞ�� ¼ 1

2
H	
�H�

	
 � 1
12g

��H	
�H	
� � g��V

þ 4B	�B	
�V1 þ g��B	
B

	
V2: (74)

The remaining three terms in Eq. (73) are due to the non-
minimal gravitational couplings. For the �1 coupling, we
find

ðT�1
Þ�� ¼ �1ð12g��B	
B�
R	
�
 þ 3

2B

�B	�R�

	
�

þ 3
2B


�B	�R�
	
� þD	D
B

	�B�


þD	D
B
	�B�
Þ: (75)

The contribution from the �2 coupling is

ðT�2
Þ�� ¼ �2ð12g��B	�B


�R	
 � B	�B
�R	


� B	
B�

R

�
	 � B	
B�


R
�
	

þ 1
2D	D

�B�

B

	
 þ 1
2D	D

�B�

B

	


� 1
2D

2B	�B	
� � 1

2g
��D	D
B

	�B

�Þ: (76)

Finally, for the �3 coupling we obtain

ðT�3
Þ�� ¼ �3ðD�D�B	
B	
 � g��D2B	
B	


� B	
B	
G
�� þ 2B	�B�

	RÞ: (77)

The equations of motion for the antisymmetric 2-tensor
are obtained by varying the Lagrange density (71) with

respect to B��, while holding the metric and any matter

fields fixed. They can be written in the form

D	H
	�� ¼ j��

V þ j��
R ; (78)

where the potential current j��
V is given by Eq. (55) and the

curvature current j
��
R is defined as

j��
R ¼ � 2�1

�
B	
R

	
�� þ 2�2

�
B	

½�R��	 � 2�3

�
B��R:

(79)

The sum of the currents is covariantly conserved on shell,

D�ðj��
V þ j��

R Þ ¼ 0; (80)

as a consequence of the minimal kinetic term for B��

chosen for the theory (71). This result is the nonminimal
analog of Eq. (58). Since j

��
V involves the derivatives V1

and V2, which are nonzero when the massive modes are
excited, Eq. (80) can serve as a constraint on the massive
modes. However, when the massive modes vanish, it can be
viewed instead as a constraint on the curvature. This issue
is revisited as part of the discussion of the linearized limit
in Sec. IVB.
For the matter described by the Lagrange density LM,

the equations of motion follow by variation with respect to
the matter fields. The matter energy-momentum tensor
ðTMÞ�� is covariantly conserved,

D�ðTMÞ�� ¼ 0: (81)

This can be verified explicitly as follows. First, note that
the components ðTBÞ��, ðT�1

Þ��, ðT�2
Þ��, and ðT�3

Þ�� of

the total energy-momentum tensor satisfy the relation

�D�ðTBÞ�� ¼ �D�½ðT�1
Þ�� þ ðT�2

Þ�� þ ðT�3Þ���: (82)

This can be checked by evaluating the left-hand side using
the field equations (78), the identity (4), the Bianchi iden-
tities for the curvature tensor, and the identity (15). Next,
take the covariant divergence of the gravitational field
equations (73) and impose the traced Bianchi identities
D�G

�� ¼ 0. Substitution of Eq. (82) then yields the matter

energy-momentum conservation law (81).

B. Linearization

This section explores the linearized version of the theory
(71) in an asymptotically flat spacetime. We choose coor-
dinates as in Eq. (31) and impose the condition (32). The
weak-field limit is taken, so only the leading-order terms in
the fluctuations h�� and ~B�� are kept. The fluctuations are

assumed to vanish in the asymptotic region, far from any
matter sources. As usual, raising and lowering of indices on
linear quantities is understood to involve the Minkowski
metric.
In the minimum of the potential, X1 ¼ X2 ¼ 0 and the

vacuum solution satisfies
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������b��b�� ¼ x1; ������b��b�� ¼ x2: (83)

At linear order, X1 and X2 take the form

X1 � 2b��B
≁
�� � 2b�	b�

	h��;

X2 � 2b��B
≁
�� � 1

2x2h
	
	:

(84)

These combinations represent the massive modes in the
theory at this order.

At leading order, the field equations for the metric retain
the form (73), but all quantities are understood to be
linearized. The linearization of the Einstein tensor on the
left-hand side is standard. The first term on the right-hand
side is the linearized energy-momentum tensor for ordi-
nary matter. Explicit expressions for the remaining terms
on the right-hand side are

ðTBÞ�� � 4ð�11X1 þ �12X2Þb�	b�
	

þ ���ð�22X2 þ �12X1Þx2;
ðT�1

Þ�� � �1½12���b
	
b�
R	
�
 þ 4b
�b	ð�R�Þ	
�

þ 2b	�b


�R	
 þ 4b	ð�@


D	B�Þ
�;
ðT�2

Þ�� � �2½���ðb	�b
�R	
 � 1
2b

	�@
H	
�

� 1
4b

	
b�
R	
�
 � 1
2b

	
@�D�B	
Þ
� b	�b



�R	
 � 2b	
R	ð�b�Þ


þ b	�b
�R	��
 � 1
2b

	
ð�R�Þ	
�b
�

þ b
�@ð�D
B�Þ� þ b	ð�@

D�ÞB	


þ b	ð�@

D
B�Þ	�;

ðT�3
Þ�� � �3½ð@�@� � ���@

	@	ÞX1

� 2b�
	b�	R� x1G���:

(85)

In these expressions, all covariant derivatives and curva-

tures are taken to linear order in h�� and B
≁
��.

The linearized field equations for the fluctuations B
≁
��

take the form

@	H
	�� ¼ j��

V þ j��
R ; (86)

where H��� is constructed using B
≁
��. The linearized cur-

rents j
��
V and j

��
R are given by

j
��
V ¼ 4ð�11X1 þ �12X2Þb�� þ 4ð�22X2 þ �12X1Þb��

(87)

and

j��
R ¼ � 2�1

�
b	
R

	
�� þ 2�2

�
b	

½�R��	 � 2�3

�
b��R:

(88)

The identity @�@�H��� ¼ 0 implies that the total cur-

rent is conserved,

@�ðj��
V þ j��

R Þ ¼ 0: (89)

This can be interpreted as a constraint on massive-mode
excitations, which appear in j

��
V , and it also implies con-

ditions on the linearized curvatures.
To investigate further, it is convenient to introduce two

combinations of the linearized massive modes X1, X2 and
the linearized scalar curvature R given by

X0
1 ¼ 4ð�11X1 þ �12X2Þ � 1

2�
ð�2 þ 4�3ÞR;

X0
2 ¼ 4ð�22X2 þ �12X1Þ:

(90)

In terms of these variables, the conservation law (89) takes
the simple form

b	�@
	X0

1 þ b	�@
	X0

2 �
1

�
ð4�1 þ �2Þb	
@	R
� ¼ 0:

(91)

By applying the differential operator b��b
�

@


, which

cancels the first two terms containing the massive modes,
we obtain a condition on derivatives of the linearized Ricci
tensor,

0 ¼ ð4�1 þ �2Þb��b�
b	
@
@	R
�

¼ ð4�1 þ �2Þb��b�
b	
@
@	½ðTMÞ
� � 1
2�
�ðTMÞ���

þ ð4�1 þ �2Þ �Oð�Þ: (92)

In the second equation above, we have substituted for the
linearized Ricci tensor in terms of the linearized matter
energy-momentum tensor using the gravitational field
equations.
If we solve the field equations perturbatively in the

couplings �1, �2, then at lowest order Eq. (92) generates
a direct constraint on ordinary matter. Consider, for ex-
ample, a static distribution of mass given by

ðTMÞ�� ¼ �
0
�


0
�; (93)

and adopt an observer coordinate system with b�� lying in

a configuration with the vectors (23) given by ~e ¼ ða; 0; 0Þ
and ~b ¼ ðb cos�; b sin�; 0Þ. Then the constraint (92) be-
comes

ð4�1 þ �2Þa2b sin� @2�

@z@x
¼ ð4�1 þ �2Þ �Oð�Þ; (94)

which is generically inconsistent with small corrections to
the general-relativistic behavior of matter. In this work, we
are interested in post-Newtonian corrections to general
relativity rather than in more radical proposals. To retain
conventional properties of matter, we therefore limit atten-
tion in what follows to models satisfying the condition

4�1 þ �2 ¼ 0: (95)

In these models, the constraint (92) is satisfied automati-
cally. Note that conditions of this type also arise in the
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post-Newtonian limit of other theories with nonminimal
gravitational couplings, such as vector-tensor models with-
out a potential term [35].

Imposing the condition (95) eliminates the last term in
the conservation law (91), which reduces to a constraint on
the massive-mode combinations X0

1, X
0
2. Assuming at least

one of x1 and x2 is nonzero, we can choose the special

observer reference frame (24) in which ~b ¼ c ~e for some
nonzero real number c. The conservation law (91) then
implies

ð1þ c2Þ ~e� ~rX0
1 ¼ ~e� ~r�;

X0
2 ¼

1

c
ðX0

1 � �Þ;
(96)

where � is a purely static function obeying ~e � ~r� ¼ 0 in
this special frame. Imposing the boundary conditions
� ¼ 0 at t ¼ t0 and X0

1 ¼ 0 at spatial infinity then implies

X0
1 ¼ X0

2 ¼ 0 (97)

everywhere in spacetime. This shows that the only prop-
agating modes in the theory (71) subject to the consistency
requirement (95) and to a plausible choice of boundary
conditions are gravitational and phon modes.

Other boundary conditions can also be adopted, for
which X0

1 and X0
2 could potentially act as extra sources

for nonmassive modes in h�� and B
≁
��. A similar situation

arises for the massive mode in bumblebee models, which
under suitable boundary conditions yields a modified
Einstein-Maxwell theory even in the weak static limit
[8]. An investigation along related lines for the Lagrange
density (71) or the general action (7) is of interest but lies
beyond our present scope.

C. Post-Newtonian metric

In this section, we manipulate the equations of motion to
extract a version of the linearized gravitational field equa-
tions that depends on the vacuum values b�� but is inde-

pendent of B
≁

��. This is achieved at leading order in the

nonminimal couplings. A match is then made to the gen-
eral form of the linearized gravitational field equations
obtained in Ref. [12], and the post-Newtonian metric
extracted.

Consider first the linearized dynamics of the fluctuations

B
≁
��. We adopt the requirement (95) for compatibility with

conventional properties of matter and choose boundary
conditions yielding the condition (97) on the massive
modes. The field equations (86) then simplify to the form

@	H	�� ¼ �2

2�
ðb	
R	
�� þ 4b	½�R��	 þ b��RÞ: (98)

This result can be interpreted as an equation for the flucta-

tions B
≁
�� subject to the constraints

b��B
≁
�� ¼ b��b�

�h�� þ a1R;

b��B
≁
�� ¼ 1

2x2h
	
	 þ a2R;

(99)

where a1 and a2 are given by

a1 ¼
�

�22

�22�11 � �2
12

����1 þ �3

4�

�
;

a2 ¼
�

�12

�2
12 � �22�11

����1 þ �3

2�

�
:

(100)

In these expressions, the coupling constant �2 has been
eliminated in favor of �1 using the condition (95).
The desired goal is to use the field equations (98) to

eliminate all appearances of B
≁
�� in the linearized gravita-

tional field equations (73), which corresponds to eliminat-

ing B
≁
�� from the partial energy-momentum tensors (85).

We work here at leading order in the coupling constants �1

and �3. A useful first step is to choose boundary conditions
on the dynamics ensuring that the projection b��H��� is

first order in �1. To achieve this, consider the cyclic iden-
tity

@	@	ðb��H���Þ ¼ b��ð@�@	H	�� þ @�@
	H	��

þ @�@
	H	��Þ: (101)

Inserting the field equations (98) yields

@	@	ðb��H���Þ ¼ 8�1

�

�
b	�b


�@
G�	

� b	
b�
@	G�� þ b	
b�
@�G	�

� 1

2
b	
b�
@	Rþ 1

4
x1@�R

�
: (102)

This is a hyperbolic equation for the projection b��H���

with source term of orderOð�1=�Þ, where �1=� is taken as
a small dimensionless parameter controlling the size of the
nonminimal couplings. We can ensure that the solutions
are also of order Oð�1=�Þ,

b��H��� �Oð�1=�Þ; (103)

by choosing boundary conditions to eliminate the homo-
geneous solutions to Eq. (102). This choice implies that the
projected covariant derivative b��D�B�� is of order

Oð�=�Þ,
b��D�B�� � 1

2b
��H��� � 1

2@�ða1RÞ �Oð�=�Þ: (104)

With these results in hand, we can tackle the elimination

of B
≁
�� from the partial energy-momentum tensors (85).

Inspection reveals that the terms in the latter involving the

fluctuations B
≁
�� either are higher order in the nonminimal

couplings �1, �3 or are expressible in terms of the metric
fluctuations h��. Some manipulation then yields effective

linearized field equations for the metric fluctuations h�� at
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leading order in �1 and �3. In terms of linearized curvature
tensors, these equations can be expressed as

R�� � �ðSMÞ�� � 2�1b�
	b�	Rþ 6�1b

	
b�ð�R�Þ�	


þ 6�1b�
	b�


R	
 þ 8�1b


ð�R�Þ	b


	

� 5����1b
	�b
�R	
 þ 3

2
����1b

	
b�
R	
�


þ 4�1b
	
�b


�R�	�
 � �3b
	
b	
R��

þ ����1b
	
b	
R; (105)

where ðSMÞ�� is the trace-reversed energy-momentum

tensor for the matter.
At this stage, the expression (105) for the linearized

gravitational field equations can be matched to the general
form

R�� ¼ �S�� þ ð��sÞ�� þ ð��tÞ�� þ ð��uÞ��; (106)

obtained in Ref. [12], where the quantities on the right-
hand side are defined as

��s
�� ¼ 1

2���ð �sBÞ	
R	
 � 2ð �sBÞ	ð�R�Þ	 þ 1
2ð�sBÞ��R

þ ð �sBÞ	
R	��
;

�t
�� ¼ 2ð�tBÞ	
�ð�R�Þ�	
 þ 2ð�tBÞ�	

�

R	


þ 1
2���ð�tBÞ	
�
R	
�


¼ 0;

�u
�� ¼ �uBR��:

(107)

Note that the net contribution to ð��tÞ�� vanishes, as a

consequence of an identity satisfied by the coefficients
ð�tBÞ���� [12]. In the expressions (107), the coefficients
for Lorentz violation ð�sBÞ��, ð�tBÞ����, and �uB can be ex-
pressed explicitly in terms of the vacuum value b�� as

ð �sBÞ�� ¼ 2�1ðb�	b
�	 � 1

4�
��b	
b	
Þ;

ð�tBÞ���� ¼ 2�1ðb��b�� þ 1
2b

��b�� � 1
2b

��b��Þ
� 3

2�1ð���b�	b
�	 � ���b�	b

�	

� ���b�	b
�	 þ ���b�	b

�	Þ
þ 1

2�1ð������ � ������Þb	
b	
;
�uB ¼ ð32�1 � �3Þb	
b	
:

(108)

Comparison of these vacuum-value coefficients with the
results (72) for the coefficient fields appearing in the
Lagrange density (71) reveals a rescaling of the latter of
the type described in Ref. [12].

It is instructive to compare the present results for the
antisymmetric 2-tensor to the equivalent ones for bumble-
bee theories. In these models, a potential for a vector field

B� drives the formation of a vacuum value b� and thereby

triggers spontaneous Lorentz violation. Possible nonmini-
mal curvature couplings include Lorentz-violating cou-
plings of the s�� and u types, but t���� couplings cannot
appear [4]. In contrast, the theory (71) investigated here
provides an explicit example of how nonzero t���� cou-
plings can arise. Although the coefficients ð�tBÞ���� pro-
duce no leading-order contribution to the linearized
gravitational field equations, they may generate nonzero
contributions at higher orders. Moreover, the coefficients
ð�tBÞ���� contain information about b�� that is absent in

ð�sBÞ��, as can be verified by inspection of Eq. (108) in the
special frame (24). Establishing the phenomenological role
of the coefficients ð�tBÞ���� is an interesting open issue for
future investigation.
Given the linearized gravitational field equations in the

form (106) and the explicit expressions (108) for the co-
efficients for Lorentz violation, we can extract the post-
Newtonian metric sourced by a given distribution of mat-
ter. For this purpose, we assume the matter is described as a
conventional perfect fluid generating the gravitational po-
tentialsU,Ujk, Vj,Wj, Xjkl, and Yjkl defined in Eq. (28) of
Ref. [12]. We work at post-Newtonian order Oð3Þ, and
choose the post-Newtonian gauge at this order as

@jg0j ¼ 1
2@0gjj; @jgjk ¼ 1

2@kðgjj � g00Þ: (109)

Including terms to post-Newtonian order Oð3Þ, we obtain

g00 ¼ �1þ 2Uþ 3ð �sBÞ00Uþ ð �sBÞjkUjk

� 4ð �sBÞ0jVj þOð4Þ;
g0j ¼ �ð�sBÞ0jU� ð�sBÞk0Ujk

� 7
2ð1þ 1

28ð�sBÞ00ÞVj � 1
2ð1þ 15

4 ð�sBÞ00ÞWj

þ 3
4ð�sBÞjkVk þ 5

4ð �sBÞjkWk þ 9
4ð�sBÞklXklj

� 15
8 ð �sBÞklXjkl � 3

8ð �sBÞklYklj;

gjk ¼ 
jk þ ½ð2� ð�sBÞ00Þ
jk�U
þ ½ð�sBÞlm
jk � ð �sBÞlj
mk

� ð �sBÞlk
mj þ 2ð�sBÞ00
jl
km�Ulm:

(110)

Note that the corresponding explicit post-Newtonian solu-

tions for B
≁
�� can also be obtained from the equations of

motion (98).
The above result for the post-Newtonian metric involves

the vacuum coefficients (108). However, with the assump-
tion of a conventional perfect fluid and the gauge choice
(109), the result (110) retains the same form as the general
expression for the pure-gravity sector of the minimal SME.
As a consequence, the implications for experimental and
observational tests derived in Ref. [12] apply directly to the
theory (71) in the form considered here. For example, the
constraints on the SME coefficients �s�� obtained via lunar
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laser ranging [10] and from atom interferometry [11] can
be reinterpreted as limits on ð�sBÞ��. Other potential
methods to measure these coefficients include laboratory
experiments with torsion pendula or gravimeters, observa-
tions of the precession of orbiting gyroscopes, analyses of
timing signals from binary pulsars, solar-system tests in-
volving perihelion precessions, and time-delay and
Doppler measurements [12,36].

We conclude this section with a brief discussion of the
relation of the post-Newtonian metric (110) to the parame-
trized post-Newtonian (PPN) formalism [35,37] developed
for testing gravitational physics. The PPN formalism as-
sumes the existence of a special frame in which all uncon-
ventional effects are controlled by isotropic parameters, so
any putative match to Eq. (110) requires identifying a
frame in which the coefficients ðsBÞ�� and ð�tBÞ���� are
isotropic. For such a frame to exist, the coefficients ð �sBÞ��,
ð�tBÞ���� must satisfy the isotropic constraints

ð �sBÞ0j ¼ 0;

ð �sBÞjk ¼ 1
3


jkð�sBÞ00;
ð�tBÞ���� ¼ 0:

(111)

However, no such frame exists when b�� is nonzero. One

way to see this is to use the separation (23) into two spatial

vectors ~e, ~b to write the isotropic constraints on ð �sBÞ�� in
the form

~e� ~b ¼ 0;

ð ~e2 þ ~b2Þ
jk � 3ejek � 3bjbk ¼ 0:
(112)

Some manipulation then reveals that only ~e ¼ ~b ¼ 0 can
satisfy these constraints. The present theory for an anti-
symmetric 2-tensor B�� with nonzero vacuum value b��

therefore lacks an isotropic post-Newtonian limit, and
hence it lies outside the PPN. This implies no experimental
or observational limits on the theory can be placed from
post-Newtonian tests analyzed via the PPN formalism.

V. TADPOLES IN THE MINIMAL MODEL

In this section, we return to the minimal theory (34) in
Minkowski spacetime and investigate one aspect of its
quantum behavior. While the renormalizability of various
sectors of the SME viewed as an effective field theory has
been studied at one loop [38], less is known about the issue
of renormalizability and its relation to the potential V in
theories with spontaneous Lorentz breaking. Here, we
consider the effective action at linear order in the bare
couplings and study the behavior of the resulting interac-
tions under the renormalization group. The Wilson formu-
lation of the RG [39–41] has been used to adduce evidence
for relevant nonpolynomial interactions in scalar field
theories [42,43], while exact RG methods [44] imply an
essentially regularization-independent differential equa-

tion governing the RG flow for these interactions [45].
Similar methods can be applied to models with Lorentz
violation [46], including bumblebee theories [13]. In what
follows, we briefly summarize the scalar and vector cases
and outline results for the minimal model (34) involving
the antisymmetric 2-tensor field B��. Details of the meth-

odology and a summary of possible issues can be found in
Ref. [13].

A. Scalar and vector

Consider a theory with a single real scalar field, with
Euclidean action in d dimensions given in terms of bare
fields by

Sb ¼
Z

ddx

�
1

2
@��@��þ Vb

�
: (113)

In what follows, the interaction Lagrange density Vb is
taken to be representable as a power series in �2, and a
momentum cutoff � is used to regulate loop integrals.
Loop corrections generate the renormalized effective

action S. Finding an exact expression for S requires deter-
mining the coefficient of every effective n-particle vertex,
which requires all n-point correlation functions. This is a
challenging task. One approach yielding an approximate
expression is to limit attention to interactions that are at
most linear in the bare couplings. All contributions to the
effective n-particle amplitude then involve bare (nþ 2k)-
point vertices attached via k tadpole loops. These diagrams
can be summed [47]. Each loop contributes a factor of
�Fð0Þ=2. The factor of 2 is the symmetry factor for the
loop, while �Fðx� yÞ is the Feynman propagator for a
massless scalar, which differs from the negative inverse
Laplacian only through its large-momentum regulation. In
four dimensions, �Fð0Þ ¼ �2=16�2. Each diagram also
acquires an additional symmetry factor of k! corresponding
to the interchange of k loops.
In terms of dimensionless effective coupling constants,

the effective interaction action can be written as

Sintb ¼
Z

ddx�dUb; (114)

where the dimensionless potential Ub ¼ Ubð��ðd�2Þ=2�Þ
depends upon � as a parameter as well as on �. This
dependence determines the nontrivial RG flow. Including
all the first-order contributions, Ub must satisfy

�
@Ub

@�
þ dUb � 1

2
ðd� 2Þ��ðd�2Þ=2�U0

b

¼ � 1

2
ðd� 2ÞCbU

00
b: (115)

The right-hand side of this equation contains the quantum
corrections and arises entirely from tadpole contributions.
The numerical value of the constant Cb depends on the
regulator, but the result (115) is otherwise regulator inde-
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pendent in the tadpole approximation. Using a cutoff regu-
lator yields Cb ¼ 1=16�2 in four dimensions.

The solutions Ub of the differential equation (115) with
power-law dependences on �, �@Ub=@� ¼ ��Ub, are
eigenmodes of the RG flow near the Gaussian fixed point.
Solutions with positive anomalous dimension � corre-
spond to asymptotically free theories. They have stronger
scale dependences than superficially renormalizable theo-
ries and involve relevant nonpolynomial interactions. Each
value of � gives only one functional form for the interac-
tion, at least at the lowest nontrivial order in the coupling.
Each model is therefore renormalizable at this level, being
specified completely by the value of the coupling at a fixed
energy and by the anomalous dimension �, which controls
the energy dependence of the cross section.

In the above, renormalizability is understood to be the
statement that all divergences can be eliminated and all
experimental properties determined by specifying only a
finite number of observable quantities. It may seem coun-
terintuitive that a nonpolynomial theory can be renorma-
lizable in this sense because expanding in monomials
produces an infinite number of coefficients that could be
deemed adjustable. However, a sum of monomials is only
one way to express a function. For example, although
g expðc�2=�2Þ can be expanded as an infinite number of
monomial operators, the polynomial �2�2 þ ��4 could
also require an infinite sum to represent it in terms of other
operators. The sine-Gordon theory in 1þ 1 dimensions has
a potential with an infinite number of monomial terms, but
the theory is known to be renormalizable [48]. Fur-
thermore, the RG relevance or irrelevance of nonpolyno-
mial potentials for� is distinct from the known irrelevance
of all monomial potentials of degree greater than 4. The
monomials fail to span the infinite-dimensional vector
space of entire functions and hence form an incomplete
basis for the space of allowed potentials, so the generic
behavior of nonpolynomial theories cannot be inferred
from the triviality of interacting polynomial theories. The
widespread use of the incomplete basis of monomials in
perturbative calculations originates in their special and
convenient relationship to external states of known particle
number, but this feature is inessential in the RG context.

Next, we summarize briefly the case of an action for a
vector field B� with Maxwell kinetic term and potential Vb

expressible as a power series in B�B
� [23]. Note that this

bumblebee theory has no gauge invariance. The RG cal-
culations in Euclidean space parallel those for a multiplet
of four scalars except for minor changes arising from the
structure of the kinetic term [13]. As in the scalar case, the
eigenmodes of the RG flow with positive anomalous di-
mension correspond to asymptotically free theories.

All nontrival potentials of this type generate a vacuum
value b� for the bumblebee field B� and trigger sponta-

neous Lorentz breaking. However, only a subset lead to
stable theories in Minkowski spacetime, where B�B

� can

be either positive or negative. Stable renormalizable theo-
ries arise when the anomalous dimension � is less than 2
and b� is spacelike or when the anomalous dimension � is

greater than 8 and b� is timelike.

B. Antisymmetric 2-tensor

For the case of the antisymmetric 2-tensor B��, we

consider the minimal theory with Lagrange density (34).
Only two independent observer scalars can be constructed
from B��, which we choose as

X ¼ B��B
��; Y ¼ B��B

��: (116)

The scalars X1, X2 defined in Eq. (20) could also be
adopted, but the above choice simplifies the presentation
of the RG equation. The bare potential Vb is taken to be
expressible as a power series in X and Y. As occurs for the
bumblebee theory, the equations for the RG flow are
equivalent up to numerical factors to those for a multicom-
ponent scalar field. The differences are encoded in a frac-
tion f, which is the number of propagating degrees of
freedom divided by the total number of degrees of freedom
appearing in the kinetic term. For the antisymmetric 2-
tensor, f ¼ 1=2 because 3 of the 6 degrees of freedom have
propagators in the kinetic term.
Restricting attention to interactions that are at most

linear in the bare couplings implies as before that the
diagrams for the effective amplitudes involve tadpole loops
attached to bare vertices. Each tadpole loop arises from a
contraction of two factors of B�� closing an external line,

with the specific contraction determining the resulting
contribution from the diagram. In forming the loops, an
external line can be closed in one of five ways. Connecting
the two fields within a single X yields a factor of 12C�2,
where C ¼ 2fCb. For two tensors from different X terms,
there are four possibilities generating a net contribution of
8C�2X. Contracting two fields in a single Y gives zero.
The four ways to connect a field in X with one in Y yield
8C�2Y, while the four possibilities using tensors from two
different Y factors yield 8C�2X. Note that there is no
mixing of parity-odd and parity-even parts of the
interaction.
To investigate the RG flow, we write the effective po-

tential in terms of dimensionless couplings gj;k as

VðX; YÞ ¼ X1
j;k¼0

gj;k�
4 XjYk

�2ðjþkÞ : (117)

Operating on V to obtain �dV=d� yields two kinds of
contributions, those derived from direct differentiation of
Eq. (117) and those arising via gj;k from the differentiation

of loop diagrams [40,43]. Keeping only quantum correc-
tions linear in the field, which correspond to the tadpole
diagrams, the result is
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�
dV

d�
¼ X1

j;k¼0

��
�
dgj;k
d�

þ 4gj;k � 2ðjþ kÞgj;k
�
�4 XjYk

�2ðjþkÞ

þ gj;k�
4 1

�2ðjþkÞ ½12jXj�1Yk þ 4jðj� 1ÞXj�1Yk þ 4jkXj�1Yk þ 4kðkþ 1ÞXjþ1Yk�2�C�2

�
: (118)

Some combinatorial factors appear in the quantum correc-
tions, which are the terms involving C�2.

The effective potential should be independent of the
cutoff, �dV=d� ¼ 0. Also, if the potential is an eigen-
mode of the RG flow near the Gaussian fixed point, then
the couplings gj;k should have power-law scaling with �,

�
dgj;k
d�

¼ ��gj;k: (119)

Here, � is the anomalous dimension of the potential.
Inserting these conditions into Eq. (118) and equating
powers of X and Y yields the recurrence relation for the
couplings gj;k of an eigenmode as

½�� 4þ 2ðjþ kÞ�gj;k
¼ Cf4ðkþ 1Þðkþ 2Þgj�1;kþ2

þ ½12ðjþ 1Þ þ 4jðjþ 1Þ þ 8kðjþ 1Þ�gjþ1;kg: (120)

By definition, g�1;k ¼ 0.
The recurrence relation (120) is more complicated than

the equivalent expressions for the scalar and vector cases
because three couplings are involved rather than two. The
number of different interaction terms involving 2n powers
of B�� is nþ 1. If all the couplings at order (2n� 2) are

known, then the couplings at order 2n are constrained by n
equations, one for each lower-order coupling. This means
one coupling is undetermined at each order. For example,
arbitrary values for the entire set fg0;kg can be chosen,

whereupon all other couplings are fixed. The freedom to
adjust infinitely many nonzero parameters is an indication
of possible nonrenormalizability, since an infinite number
of measurements is then required to specify the theory.
However, renormalizability can be restored if at most
finitely many parameters are nonzero. For example, if the
effective potential depends only on X, so that all the
couplings g0;k vanish, then a stable theory can be specified

by the anomalous dimension � and a single coupling g.
This suffices for renormalizability, since only two mea-
surements can fix � and g.

The general case has nontrivial dependence on both X
and Y. The key feature of the theory responsible for the
possible nonrenormalizability is the existence of more than
one independent observer scalar, as in Eq. (116). We there-
fore expect that other theories with general interactions
involving tensors of higher rank also exhibit possible non-
renormalizability. Note, however, that nonrenormalizable
interactions may nonetheless be relevant, since for a stable
theory a positive anomalous dimension � implies the ef-

fective potential grows at large scales, the free-field fixed
point is ultraviolet stable, and the theory displays asymp-
totic freedom.
The recurrence relation (120) is equivalent to a partial

differential equation for the effective potential. It is con-
venient to introduce the dimensionless independent varia-
bles x, y and dimensionless effective potential U by

x ¼ X

�2
; y ¼ Y

�2
; Uðx; yÞ ¼ VðX; YÞ

�4
: (121)

Then, the recurrence relation becomes

ð�� 4ÞUþ 2xUx þ 2yUy � 12CUx

� 4CxðUxx þUyyÞ � 8CyUxy ¼ 0; (122)

where partial derivatives of U are denoted by subscripts,
Ux, Uy, etc.

We know of no exact solutions to Eq. (122) that are both
absolutely stable and have a nontrivial dependence on y.
An example of a solution with weak instability is the
effective potential

Uðx; yÞ ¼ g exp

�
x

4C

�
cosh

�
y

4C

�
; (123)

which satisfies Eq. (122) with anomalous dimension � ¼
7. This potential is strictly positive but tends to zero as x !
�1 for jyj< jxj, so there is no lowest-energy field con-
figuration. The instability is weak because the energy
approaches a limiting constant instead of diverging nega-
tively. This implies tiny modifications of the potential
suffice to restore stability. Adding a superficially renorma-
lizable interaction such as g0X2 suffices to obtain a physi-
cally meaningful model at the level of effective field theory
with a finite cutoff, and it triggers a Lorentz-violating
vacuum expectation value with y ¼ 0 and large negative
x. However, the RG flow suggests the extra term is irrele-
vant and fails to produce a stable continuum limit. It is also
conceivable that stability could be restored at the nonlinear
level.
The relationship between the effective potential and

Lorentz violation is encoded in the recurrence relation
(120). If B�� develops a nonzero vacuum value, the theory

must either spontaneously break Lorentz symmetry or be
unstable. A necessary condition for Lorentz invariance is
the existence of a local minimum of the effective potential
U at B�� ¼ 0 or, equivalently, at x ¼ y ¼ 0. This implies

that
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Uxð0; 0Þ ¼ 0; Uyð0; 0Þ ¼ 0;

Uxxð0; 0Þ 	 0; Uyyð0; 0Þ 	 0:
(124)

We next examine the implications of these conditions and
the recurrence relation (120) at each order in B��.

Consider first the lowest-order couplings, corresponding
to terms up to fourth order in B��. The conditions (124)

imply

g1;0 ¼ g0;1 ¼ 0; g2;0 	 0; g0;2 	 0: (125)

The recurrence relation (120) imposes two additional lin-
ear equations relating the quadratic and quartic couplings,

ð�� 2Þg1;0 ¼ 32Cg2;0 þ 8Cg0;2;

ð�� 2Þg0;1 ¼ 20Cg1;1:
(126)

The only way to satisfy all these conditions is to have
g2;0 ¼ g1;1 ¼ g0;2 ¼ 0. A similar argument holds at sixth

order. Since Uðx; 0Þ is required to be stationary at x ¼ 0,
the coupling g3;0 must vanish. Likewise, g0;3 ¼ 0. The
recurrence relation (120) then implies the remaining coef-
ficients g2;1, g1;2 vanish at this order as well. These analytic
arguments become more subtle at eighth order. Although
Eq. (120) forces the condition g3;1 ¼ g1;3 ¼ 0, nonzero
values of the other coefficients are allowed because the
recurrence relation is satisfied for g4;0 ¼ g0;4=16, g2;2 ¼
�3g0;4=4. However, inspection of the graph of ðx4=16Þ �
ð3x2y2=4Þ þ y4 reveals that x ¼ y ¼ 0 is a saddle point
instead of a local extremum, so all the eighth-order coef-
ficients must vanish too. Elementary analytic arguments of
this type suffice to show that all coefficients vanish up to
the 14th order in B��. We expect this result to hold at all

orders. Even if this conjecture is incorrect, the above argu-
ments show that most effective potentials either trigger
spontaneous Lorentz violation or are unstable.

Consider now the special case of potential V ¼ VðB��Þ
depending only on the parity-even observer scalar X or,
equivalently, only on X1 as defined in Eq. (20). This
restriction implies a unique solution to the recurrence
relation (120) up to an overall constant. We find

VðB��Þ ¼ g�4½Mð12�� 2; 3; zÞ � 1�; (127)

where the argument z is given by

z ¼ X

2C�2
¼ 8�2

�2
B��B

��: (128)

The function Mð	;
; zÞ is the confluent hypergeometric
Kummer function, defined as [49]

Mð	;
; zÞ ¼ 1þ 	




z

1!
þ 	ð	þ 1Þ


ð
þ 1Þ
z2

2!
þ � � � : (129)

Plots of the function Mð	; 3; zÞ can be found in Ref. [50].
The effective potential (127) for B�� is closely related to

that of the effective potential VðB�Þ in the bumblebee

theory. The latter takes the form [13]

VðB�Þ ¼ g�4½Mð12�� 2; 2; zÞ � 1�; (130)

with z ¼ �32�2B�B
�=3�2. The functional properties of

VðB��Þ and VðB�Þ are therefore similar. In both cases,

Lorentz violation is ubiquitous. Stable theories exist for a
range of positive values of the anomalous dimension �, and
all the corresponding potentials exhibit spontaneous
Lorentz breaking.
The effective potential (127) allows stable theories with

both positive and negative vacuum values x1 for X.
Decomposing B�� as B0j ¼ ��j, Bjk ¼ �jkl�

l in analogy

to Eq. (49) yields X ¼ ~�
2 � ~�

2
, which can be either

positive or negative. The argument z in the effective po-
tential (127) can therefore acquire either sign in the local
minimum. An analysis paralleling that in Ref. [13] reveals
that stable theories exist for positive x1 when the anoma-
lous dimension lies between 0 and 2. For negative x1,
stability appears for � greater than 10. In the latter case,
metastable vacua also occur with larger vacuum values
for X.

VI. SUMMARY

In this work, we have studied field theories with sponta-
neous Lorentz violation involving an antisymmetric 2-
tensor B��. The theories are defined through a general

class of actions of the form (7). The core of the action
includes kinetic terms for B�� and a potential V driving

spontaneous Lorentz violation. Other components include
a gravity sector, a matter sector, and nonminimal gravita-
tional couplings.
All nonminimal nonderivative gravitational couplings to

B�� that are linear in the curvature are displayed in

Sec. II B. Section II C discusses aspects of the potential,
which can be taken as a function of the two observer-scalar
field operators X1 and X2 defined in Eq. (20). The Lorentz-
violating solutions to the equations of motion are classified
by two vacuum values, x1 and x2. Generic features of these
theories include the appearance of massless NG modes,
which are solutions of Eq. (33), and the massive modes,
which can be identified with X1 and X2. In some models,
certain NG modes appear as physical modes, called phon
modes, that propagate at long range.
A comparatively simple class of theories with some

elegant features consists of Lagrange densities with
gauge-invariant kinetic term for B�� and without nonmi-

nimal couplings. These minimal models are the subject of
Sec. III. We show they are equivalent to certain field
theories with spontaneous Lorentz violation involving a
vector A�. In Minkowski spacetime and in the absence of

Lorentz violation, these equivalences reduce to the known
dualities between massless B�� and scalar fields and be-

tween massive B�� and vector fields [1]. The potential for

Lorentz violation produces a hybrid duality in which phon
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mode and massive modes appear as different combinations
of the components of the vector A�. Couplings to external

currents and to gravity in Riemann spacetime leave un-
affected this basic picture, as shown in Sec. III B.

Some features of nonminimal curvature couplings of
B�� are considered in Sec. IV. In gravitational theories

with spontaneous Lorentz breaking, the dominant curva-
ture couplings generating Lorentz violation involve one or
more of the three coefficient fields s��, t����, and u [4].
The action (7) for B�� incorporates all three types of

couplings. We demonstrate this using the Lagrange density
(71), which is a restriction of the theory (7) both simple
enough for illustrative purposes and sufficiently general to
exhibit nonzero coefficient fields s��, t����, and u. In
Sec. IVB, this theory is linearized about an asymptotically
flat background. Given suitable boundary conditions, the
massive modes become frozen at this level, and only the
phon and gravitational modes propagate. The post-
Newtonian expansion for the theory is developed in
Sec. IVC. This produces the nonzero vacuum values
(108) for all three coefficient fields, a feature absent from
other gravitationally coupled models with Lorentz viola-
tion discussed in the literature. The post-Newtonian metric
is constructed as Eq. (110). It predicts a variety of signals in
post-Newtonian tests of gravity. Many can be measured in
existing or planned searches, while none are accessible to
analyses using the PPN formalism.

In Sec. V, we return to the minimal model in Minkowski
spacetime and study the quantum behavior of the Lorentz-
violating potential. The RG flow in the tadpole approxi-
mation is determined by Eq. (118). An analytic solution for
the special case with potential depending only on the
parity-even observer scalar is obtained in Eq. (127). For
potentials of this form, stable theories exist with anoma-
lous dimensions lying between 0 and 2 or larger than 10.
All potentials of this type exhibit spontaneous Lorentz
breaking.
In conclusion, the spontaneous breaking of Lorentz

symmetry via an antisymmetric 2-tensor offers some in-
triguing features. While these field theories display the
properties expected from the broad existing treatment for
general tensor fields [4,7,8], the structure of the NG and
massive modes and of the gravitational couplings arising
from the case of the antisymmetric 2-tensor implies dis-
tinctive physical content. The properties discussed in the
present work suggest interesting possibilities for phenome-
nological applications, with definite signals that can be
sought in present or forthcoming experimental and obser-
vational tests of Lorentz symmetry.
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[5] V. A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683
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