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Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics
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Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero
amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even
and CPT-odd contributions forbidden in conventional electrodynamics.
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In quantum electrodynamics (QED), a photon traveling
in the vacuum has a zero amplitude for decay into mul-
tiple on-shell photons at any order in perturbation theory.
This classic no-splitting result is a by-product of
Schwinger’s work on the proper-time method and the
Euler-Heisenberg effective action in QED [1].

Schwinger’s result relies heavily on gauge invariance
and also implicitly on Lorentz and CPT symmetry.
However, Lorentz and CPT symmetry may be broken
by effects from the Planck scale [2]. Any effects are
expected to be heavily suppressed by at least one power
of the Planck mass, which implies most processes in QED
and the standard model acquire only small Lorentz-
violating corrections. Nonetheless, some processes nor-
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mally excluded may now occur. It is natural to ask how
Schwinger’s result forbidding on-shell vacuum photon
splitting generalizes to the Lorentz-violating case.

The purpose of this Letter is to discuss the amplitude
for vacuum photon splitting in the context of the general
Lorentz- and CPT-violating QED extension [3], which
includes all possible Lorentz-violating terms involving
electron and photon fields. At leading order in certain
coefficients for Lorentz violation, we find a nonzero on-
shell one-loop amplitude for photon triple splitting.

We work within the renormalizable sector of the gen-
eral QED extension for a single Dirac field  of mass m,
for which the Lagrangian L is [3,4]
L � 1
2i
�  ��D

$

� � �  M � 1
4F


�F
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1
4�kF��
�F
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 is the usual covariant derivative and
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The Lorentz violation is controlled by the real coeffi-
cients a
, b
, c
�, d
�, e
, f
, g
�, H
� in the fermion
sector and �kAF�
, �kF��
� in the photon sector.
Inspection of Eq. (1) shows the amplitude for vacuum
photon splitting is zero at tree level. The task at hand is
thus to investigate possible finite radiative corrections to
photon splitting at one loop and at leading order in the
coefficients for Lorentz violation. In fact, for our pur-
poses, it suffices to restrict attention to a conventional
photon sector with negligible �kAF�
, �kF��
�. The four
coefficients �kAF�
 have been strongly constrained using
measurements of cosmological birefringence [5–7]. Ten
of the nineteen independent coefficients in �kF��
� have
also been strongly constrained using spectropolarimetry
of cosmological sources, while the other nine can be
absorbed into the fermion sector by a field redefinition
without loss of generality [8].

With a conventional photon sector, photon splitting
in the vacuum is strongly restricted by kinematics. If
the incident on-shell photon has energy E1 and 3-momen-
tum ~pp1, and the n photons produced in the decay have
energies Ej and 3-momenta ~ppj, j � 2; 3; . . . ; n� 1, then
conservation of 3-momentum implies
P
jj ~ppjj 	 j ~pp1j.

Since each on-shell photon has 4-momentum p
 �
�E; ~pp� satisfying p2 � 0 and, hence, E � j ~ppj, this in-
equality is compatible with conservation of energy only
if all the ~ppj are aligned. The incident photon and the
decay products must therefore be collinear. It then fol-
lows that the 4-momenta of all photons are mutually
orthogonal, p
j pk
 � 0, and that they are all proportional
to some momentum p
0 satisfying p2

0 � 0 on shell.
Moreover, the transversality of each physical photon im-
plies that its polarization 4-vector "
 obeys p
"
 � 0.
Together with the requirement of collinearity, this implies
"
j pk
 � 0 and that there are at most two linearly inde-
pendent physical polarization vectors in any process.

In addition to these kinematical constraints, the ampli-
tude for photon splitting must satisfy criteria imposed by
symmetry transformations and field redefinitions. First,
since the theory (1) is invariant under observer Lorentz
transformations, the amplitude must be an observer
Lorentz scalar and so any Lorentz indices it contains
must be contracted. Second, the properties of the
Lorentz-violating operators in Eq. (1) under charge con-
jugation C imply a generalization of Furry’s theorem,
which eliminates both divergent and finite contributions
arising from certain coefficients [9]. It follows that only
a
, d
�, e
, f
, H
� can contribute to splitting into an
even number of photons, while only b
, c
�, g
� can
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contribute to odd splitting. Third, the behavior of Eq. (1)
under parity inversion P ensures that any contribution to
the amplitude linear in b
, d
�, f
 must come with one
factor of the antisymmetric tensor �
�$�. Fourth, gauge
invariance demands that the amplitude be invariant when
an external photon polarization vector is shifted by an
amount proportional to its momentum. The expression for
the amplitude must therefore vanish if any one polariza-
tion vector is replaced by the corresponding external
momentum. Finally, in the single-fermion theory (1),
some coefficients for Lorentz violation can be removed
at linear order by suitable field redefinitions [3] and
cannot contribute at leading order to physical processes.
So, we can ignore potential contributions from a
, e
,
f
, from the antisymmetric parts of c
�, d
�, and from
all but the mixed-symmetry part of g
�.

The combination of all the above constraints
severely restricts the possibilities for photon split-
ting. For splitting into two photons, we find the only
possibility for a nonzero amplitude involves the combi-
nation "
j H
�p�k"

%
l "m%. For splitting into three pho-

tons, the possibilities for a nonzero amplitude include
the two combinations �
�$�b


p�"$j "
�
k "

%
l "m% and
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c
�p

p�"%j "k%"

'
l "m'. Similar strong constraints can be

deduced on the amplitudes for splitting into any number
of photons.

To determine whether any of these amplitudes are
nonzero, we proceed by direct calculation. For splitting
into two photons, the calculation reveals that the overall
amplitude vanishes. Photon double splitting is therefore
absent, despite the presence of general Lorentz-violating
terms in the fermion sector. However, the calculation of
photon triple splitting reveals a nonzero amplitude, as we
demonstrate next [10].

Consider first the P- and CPT-even contribution to
photon triple splitting, which is linear in c
�. This arises
from a propagator insertion involving c
� in the usual
one-loop four-point diagram, as shown in Fig. 1(a). Note
that a vertex insertion of c
�, shown in Fig. 1(b), cannot
give a gauge-invariant contribution to on-shell photon
triple splitting because c
� always appears contracted
with a polarization vector. Denoting the external mo-
menta as pj, j � 1; 2; 3; 4, and the loop momentum as k,
and adopting the shorthand notation k1 � k� p1, k12 �
k� p1 � p2, etc., the contribution G from a single graph
of the form in Fig. 1(a) is
G
1
2
3
4 �
Z d4k

�2)�4

�
Tr
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��
k��6k�m��
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4�
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�
: (3)

The denominators can be combined in the usual way using Feynman parameters, so that G � A� B with
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�
;

B�� 3!
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0
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0
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Z d4k

�2)�4

�
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�
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where x12 � x1 � x2, x123 � x1 � x2 � x3, q � x1p1 � x2p12 � x3p123 with q2 � 0, and the indices on A, B are sup-
pressed for brevity. The trace of an odd number of � matrices vanishes, so the traces can be expanded as polynomials in
m2:

A � 4!
Z 1

0
dx1
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0
dx2

Z 1�x12

0
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0
dx4�A1 �m2A2 �m4A3�;

B � 3!
Z 1

0
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0
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Z 1�x12

0
dx3�B1 �m2B2�;

(5)
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and
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The traces in these expressions can be reduced. The full contribution to this vertex from all the relevant graphs,
including all permutations over external momenta, must be finite [9]. However, the expression G for a single
contributing graph diverges, and the divergences must be isolated by regulation. The integrals can be performed in
d � 4� 2� dimensions. Since the external momenta are parallel, they can all be written in terms of a single vector p
0
satisfying p2

0 � 0 and p
0 �
 � 0. We can therefore write q
 � qp
0 , etc., so that in what follows a quantity such as q2 no
longer denotes a square of the corresponding 4-vector but instead denotes the square of a scalar coefficient. Various
terms such as 6q�
 6q can then be shown to vanish upon contraction with �
, and after some algebra we find that only
terms quadratic in p
0 survive. These terms are finite, so the limit d! 4 can be taken. The result is

A1 �m2A2 �m4A3 � �
ic
�p
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Inserting these expressions into Eq. (5), we can explicitly integrate over the Feynman parameters since these appear at
most quadratically in the integrands. The result for G � A� B is

G
1
2
3
4 � �
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�p
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1
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1
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The full amplitude for the photon triple splitting at this order is obtained by summing the contributions from 24
graphs. These consist of four diagrams of the form in Fig. 1(a) with c
� insertions on the different fermion propagators,
with three distinct topological channels for each diagram, and two orientations of the fermion loop for each channel. All
these contributions can be derived from the result (9) for G by suitable index permutations. Defining P as
P
f�
1; 
2; 
3; 
4; p1; p2; p3; p4�� � f�
4; 
1; 
2; 
3; p4; p1; p2; p3�, then the sum of the four c
� insertions is
given by R � G� P�G� � P�P�G��� P
P�P�G��� for one channel. To obtain different topological channels, we
interchange first 
1 and 
2 and subsequently 
1 and 
4 without changing the momentum indices. Hence, the
full contribution to the photon triple splitting amplitude Tc is Tc � 2
R� C12�R� � C14�R��, where
C12
f�
1; 
2; 
3; 
4�� � f�
2; 
1; 
3; 
4�, C14
f�
1; 
2; 
3; 
4�� � f�
4; 
2; 
3; 
1�. Explicitly, we find
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3 � 2p1p2 � 16p1p3 � 18p2p3�

� -
1
3-
2
4�4p2
1 � 8p2

2 � 4p2
3 � 8p1p2 � 16p1p3 � 8p2p3�

� -
1
4-
2
3��p2
1 � 8p2

2 � 9p2
3 � 18p1p2 � 16p1p3 � 2p2p3��; (10)

where we have used p1 � p2 � p3 � p4 � 0. Thus, a nonzero coefficient c
� yields a finiteCPT-even contribution Tc to
the amplitude for photon triple splitting, even in the collinear limit.

By a similar set of calculations, we obtain a finiteCPT-odd contribution Tb to the amplitude for photon triple splitting
from a nonzero coefficient b
, again in the collinear limit:

T
1
2
3
4
b �

b
p0�

6)2m2 
�9p1 � 3p3�-

1
2�
3
4
� � �5p1 � 4p2 � 3p3�-


1
3�
2
4
� � �3p1 � p3�-

2
3�
1
4
��: (11)

Note that these results also imply nonzero contributions in the off-shell, non-collinear case. However, the existence of
nonzero amplitudes in the collinear limit suffices to show that Schwinger’s no-splitting result is vitiated in the presence
of Lorentz violation [11].
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FIG. 1. Diagrams for one-loop photon triple splitting.
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The nonzero amplitudes (10) and (11) must arise from
gauge-invariant terms in the effective action Seff for the
Lorentz-violating QED extension (1). The form of Seff is
not known explicitly, and it would be of interest to obtain
it. The amplitudes (10) and (11) are determined in
the collinear limit and therefore cannot be used to de-
duce uniquely the terms in Seff from which they arise.
However, Seff could include expressions such as
c
�F
�F��@�2F%'F%', which for transverse photons in
the collinear limit generates terms of the structure neces-
sary to reproduce the result (10). Note that the appearance
of the inverse box operator is to be expected in the
effective action of a massless field [12].

We close with brief remarks about an issue that is of
some interest but lies beyond our present scope: the
determination of a physical rate for on-shell photon triple
splitting. For a massive particle, the decay rate is defined
in the rest frame with a kinematic factor inversely propor-
tional to the mass, so cannot trivially be extended to the
massless case. Since the theory (1) is observer Lorentz
covariant, it may be possible to define a physically con-
sistent decay rate in terms of the particle energy in the
observer frame [13]. There is also a separate kinematical
issue to consider because collinear momenta occupy a set
of measure zero in the phase space. However, a physical
analogy is provided by the collinear parametric down-
conversion of photons in optically active crystals, for
which photon multiple splitting has been experimentally
observed [14]. The Lorentz violation induces an analo-
gous effective optical activity of the vacuum [3,8].
Equations (10) and (11) imply any nonzero decay rate
would be quadratically suppressed in the small coeffi-
cients c
� and b
 [15]. Nonetheless, Lorentz-violating
photon degradation over cosmic distances might lead to
observable effects on the redshift [16,17], conceivably
even affecting open issues such as the origin of the
cosmological constant.
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55, 6760 (1997); 58, 116002 (1998).

[4] Nonrenormalizable Lorentz-violating terms generate
suppressed contributions to the effective action at
low energies; see V. A. Kostelecký and R. Lehnert,
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