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Lorentzian Algebra for the Superstring
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A Lorentzian algebra is constructed that underlies the covariant formulation of the spinning string. It
is a simply laced hyperbolic Kac-Moody algebra having a realization on the ghost-extended spectrum of
string states. From the weight space of this algebra, we obtain a unique indefinite superalgebra that has
a realization on the superstring spectrum and that automatically implements the Gliozzi-Scherk-Olive
projection.
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One of the major quests in string theory is the search
for symmetries underlying its remarkable properties. An
important advance is the Frenkel-Kac realization' of
simply laced finite and affine Lie algebras in terms of bo-
sonized vertex operators. Among other applications, this
construction relates the spectrum of any ten-dimensional
string to the weight lattice of an associated Lie algebra.

In the covariant formulation, bosonization of the fer-
mionic ghost naturally leads to a Lorentzian extension of
the weight lattice. ' This suggests the existence of a
larger algebra, which for the superstring would incorpo-
rate covariant supersymmetry. In this Letter, we identi-
fy a particular Lorentzian algebra that is a key structure
underlying string spectra. We also find a related indef-
inite superalgebra relevant to the superstring case.

Since the weight lattice is Lorentzian, we need an ex-
tension of the Frenkel-Kac construction. Consider an ar-
bitrary integral indefinite lattice I ~ ~ in R~ q with metric
signature (+) ( —), generated by the p+q basis vec-
tors e". Introduce p+q two-dimensional free massless
scalar fields p"(z). Then, to each lattice point a=a„e",
associate an infinite tower of operators

E(g) =II~ . e(~) (z):=f~ |)'&'y(z)e'~(z)c. , (1)
2+i 2'

where

The cocycle operators c, are given by

dzc, =exp in a. M( 8$
2%i

0, @~v,
M" ='

v +-1

(3)

Bf(&y,e'~) =0
2Zl

(4)

For convenience, the Lorentz indices p~, . . . , p, associat-
ed to (g) =(g~, . . . , (,) are suppressed. Normal order-
ing is understood throughout.

Eventually, we wish to identify the operators E(~) as
vertex operators in a string theory. To do so, several
constraints must be imposed. Conformal invariance re-
lates

~ g~ =g; (; to a and selects certain linear combina-
tions of the E(~). Furthermore, only a subset of the lat-
tice is admissible because of physical constraints; exam-
ples of such constraints are mL =m~ and the restriction
to specified spinor ghost sectors. Note also that the
operators E«) with a and

~ g~ fixed are linearly depen-
dent through the relations

(2)
for arbitrary f.

The complete set fE~~)f may be given an algebraic
structure by invoking operator-product expansions:

(s)

As before, Lorentz indices are suppressed; the prime indicates the restriction
~ 0~ =

~ g~ +
~ ri ~

—a p+n. Then, since
the contour integrals select n = —1, we find for the nonvanishing graded commutators

I

[E&g),E~„)J =e(a,P) g cog)t„) (a,P)E& ),
(e)
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where

[E',Ei]:=E'Ei —( —1) ' ~ E~E',

and

(7)

A Fock-space representation of the algebra (6) pro-
vides the link to the string spectrum. The vacuum IO)
obeys a„"

I 0) =0 for n ~ 0, where the a„" are coe%cients
in the mode expansion

e(a, p): =exp[i'(a Mp)],

I
()

I

=
I (I +

I n I ~p— 1— (8)

The choice (3) for the cocycle operators results in a su-

peralgebra Z2 grading in Eq. (6): Operators from even
and odd points obey commutation and anticommutation
rules, respectively.

The structure of the algebra (6) may be partially un-

derstood as vector addition on the lattice, a+p E I
Note that the conformal dimensions of the operators in

Eq. (6), given for E(r) by h, = —,
' a(a+Q)+ I gI

—
1 for

some background charge Q, satisfy h, +h))=h, +t). The
subalgebra V of invariant or vertex operators, which has
h =0, plays a dominant role. As any such operator is a
conserved charge, the string states at any given mass lev-

el fall into representations of V. In the following, we
focus on V alone.

a(t~(z)= g a„"z-"-'.
n

The state
I a, (j)) is created from the vacuum by action

of the integrand of Eq. (1) at z =0:

I a, (g)) =e(~)(0) IO).

The algebra V is a direct generalization of the stan-
dard vertex-operator realization of Lie algebras. As usu-
al, the Cartan subalgebra of V is spanned by the momen-
tum operator Et() =ao=p:

[p",E(()] =a "E(g),

[E(q),E(„)) =e(a, —a)c(()'(„') pS. + ~~~+ ~„(,.
—](i).

Finite-dimensional subalgebras of V occur only for a re-
stricted to a Euclidean sublattice (q =0) and a ~ 2, as
may be seen from the graded commutators

0, aP~O,
E(()), (x P= —1,

[E(o),E(o)] =e(a, p) x ~ 2 (a —p) E((), a p= —2,

—
~ (axp) E() (), a p= —3,

(i2)

Thus, for I P we obtain simply laced Lie algebras and
superalgebras. In contrast, the bosonized covariant for-
mulation of the spinning string requires q=l. The re-
sulting algebras, called Lorentzian, are indefinite Kac-
Moody algebras or their superalgebra generalizations.

Modular invariance of string theories requires that the
relevant lattices be self-dual. In the Lorentzian case,
such lattices are determined by their dimension, p+1.
The only even self-dual Lorentzian lattices are

fi "+'' ={aor a —k E Z "+"
I
a X F Zj,

where X is a constant vector with components X"= 2,
and n is even. Furthermore, any odd self-dual Lorentzi-
an lattice is isomorphic to Z +", modulo a Lorentz ro-
tation.

An example important for string theory is the odd
self-dual lattice H "+",where n is odd. This lattice can
be so(4n+1, 1)-rotated into Z "+". Note, however,
that these two lattices can lead to physically inequivalent
theories because the condition h =0 is not Lorentz in-
variant in the presence of a background charge Q.

Both H "+"and Z "+"are embedded in the nonin-

A~' = [a or a —X 6 Z~'], p =4n + 1,

=(o) U (U) U (s) U (c), (14)

0 =e +e,
a =e —e' —e —e .

(1s)

The corresponding Dynkin diagram is shown in Fig. 1.
The algebra may also be obtained from the affine algebra
Dp —] by addition to the root lattice of a second null
direction.

as the conjugacy classes (o) U (s) and (o) U (U), re-
spectively. The conjugacy-class addition table and scalar
products are identical to those of so(8n). This larger lat-
tice can be interpreted as the weight lattice of a
Lorentzian algebra, Dp &, whose root lattice is the conju-
gacy class (o). The latter is spanned by the simple roots
a' of so(2p) =D~ and by an extra root a:

a' =e' —e'+'
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FIG. 1. Dynkin diagram for D~, I.

For the ten-dimensional string theories with p =5,
q =1, I ' should be the minimal Lorentzian extension of
the weight lattice of so(10):D5, w—hich is A '. The as-
sociated Lorentzian algebra is D5 ~, whose Dynkin dia-
gram, shown in Fig. 2, exhibits a triality symmetry be-
cause the elementary vector and spinor weights have the
same length. It is the unique simple simply laced
Lorentzian extension of so(10) and is a hyperbolic Kac-
Moody algebra. '

The algebra D5 i governs the space-time part of the
ghost-extended spinning-string spectrum, as may be seen
from its elementary weights and the fields that create
them from the vacuum:

)..=(10000, —1)—y(

k„=(00000, —1)—T(-i),

X, = —,
' (11111,—3)—5( y2),

k, = —,
' (1111—1, —3) —5( 3/2).

(16)

Here, y is the Neveu-Schwarz-Ramond field, T is the
tachyon of the bosonic string, and S,S are spin fields of
opposite helicity. The subscript in parentheses indicates
the ghost charge q.

It is intriguing that D5 ~ automatically yields the
correct correlation between the ghost charges and the
so(10) conjugacy classes. Moreover, with q= —

1 in the
Neveu-Schwarz sector and q = —

2 in the Ramond sec-
tor, the algebra naturally selects one of the two canonical
choices for the spinor ghost sectors.

Note that to obtain an integral lattice A ' must be
projected either to Z ' or to H '. The former possibili-
ty restricts the spectrum to the Neveu-Schwarz sectors
of the spinning string and is possible in any even dimen-
sion. The latter yields the superstring and is possible
only for dimensionality 8n + 2.

The role of supersymmetry has not yet been directly
addressed. One approach is to find an integral sublattice
of A ' that plays the role of a root lattice for some su-

peralgebra. This may be achieved by extending the root
lattice of Ds ~ by an odd weight in the (v), (s), or (c)
conjugacy classes. Since a minimal simple extension is
desired, any roots that become nonsimple must be re-
moved. The procedure is analogous to the construction
of Es from the so(16) root lattice by addition of the con-
jugacy class (s).

Addition of a vector weight e and removal of a re-
sults in a root lattice Z ', while addition of a spinor
weight —2e —X, and removal of a yields II '. The

FIG. 2. Dynkin diagram for D5, I.

associated superalgebra E5 &
is the unique simple simply

laced extension of D5 &. It can be minimally represented
by the Dynkin-Kac diagram" of Fig. 3.

Supersymmetry generators are invariant operators as-
sociated to odd points a with a ~ 1. For the Neveu-
Schwarz sectors of the spinning string, (x) = (v), the an-
ticommuting generators in the algebra E5 i have h C Z
+ —,

' and so are not conserved. They change the level

number N by odd half-units and map Gliozzi-Scherk-
Olive (GSO)-accepted states into GSO-rejected ones.
For the superstring, (x) =(s), the anticommuting gen-
erators have h E Z since Q=2e . The subset corre-
sponding to lattice points satisfying —, a —

q ~ 1 is a set
of conserved supersymmetry charges. All generators
commute with the GSO projection.

Note that D5 ~ and E5 ~ are the invariant subalgebras
V of the full lattice algebras associated with Z ' and
H ', respectively.

The maximal finite subsuperalgebra of E5 ~ is the sem-
idirect sum of a Grassmann algebra with su(5). For the
superstring, this results in a partial symmetry on the
spectrum. No finite superalgebra exists with a nontrivial
action on the whole superstring spectrum. This suggests
that an oA-shell realization of supersymmetry will in-
volve an infinite number of auxiliary fields.

In addition to their intrinsic interest as extensions of
the usual string-spectrum symmetry in which the ghost-
extended spin fields arise naturally, the lattice algebras
D5 ~ and E5 &

have other consequences. For example, the
picture-changing operation, which relates difI'erent

slices of the weight lattice of E5 i, is expected to have an
algebraic realization. More computationally useful ap-
plications could include the use of the Ward identities of
D5 &

to compute correlations by the reduction tech-
nique. ' Furthermore, enlargements of the algebras may
be significant. Extension to the heterotic strings could
yield further insights on their origin and relationships,
while inclusion of the space-time operators 8A' might

= (x)

FIG. 3. Dynkin-Kac diagram for E5 ~. The symbol (x)
represents the possible conjugacy classes (v), (s), or (c) in D5 &

of the labeled root.
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lead to an improved understanding of the nature of
space-time supersymmetry.
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