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ABSTRACT: The Mansfield Formation of southwestern Indiana is comprised of varying 

sequences of mudstones, sandstones, shales, limestones and coals that date from the 

Pennsylvanian. Two outcrops in Martin County, Indiana, contain bedded and cross-

bedded sandstones and laminated and friable siltstones, with a coal seam in one outcrop.  

Scouring, ripples and clay drapes are common in both outcrops. Carbon and sulfur 

analysis reveals total sulfur values consistently below 0.1wt.% and widely fluctuating 

C/S ratios. Trace fossils include Sclarituba isp., Treptichnus isp., Haplichnus isp., 

Skolithos isp. and tetrapod tracks. Roots and other plant material are common in some 

units. Palynological analyses of coal samples place the stratigraphically higher of the two 

outcrops to a position between the St. Meinrad and Blue Creek coals, thus dating the 

outcrop to the mid-Atokan. Collectively, the data point to a marginal marine depositional 

environment with brackish and freshwater fluvial influence and occasional sub-aerial 

exposure. 
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INTRODUCTION 

 The Mansfield Formation consists of a series of mudstones, shales, siltstones, 

sandstones and coal seams dating from the early Pennsylvanian (Kvale, et al, 2004). The 

formation reflects a broad range of depositional influences and environments over a wide 

geographic area.  Outcrops of the formation can be found in a narrow band ranging from 

5 to 20 miles wide and stretching from Cannelton, IN, at the southern boundary of the 

state, north-northwestward to Attica, IN, near the Illinois border. The formation is 

composed of sediments deposited near shorelines of an inland ocean ~320-300 million 

years ago (Mangano, et al, 2001). Shallow marine, fluvial, intertidal or subaerial 

influences are present at different outcrops of the formation. Thus, it is difficult to 

separate the different environmental influences at work during the deposition of a 

particular outcrop. 

 Various locations within the Mansfield Formation have been examined in the 

past; previous studies address sedimentology and stratigraphy (e.g., Kvale and Barnhill, 

1994; Kvale, et al, 2004), geochemistry (e.g., Mastalerz, et al, 1997, 1999), ichnology 

(e.g., Archer and Maples, 1984; Mángano, et al, 2001) and palynology (e.g. Cross, 1992; 

Engelhardt and Furer, 1996). All four disciplines—sedimentology, stratigraphy, 

geochemistry and paleontology—are analyzed in order to present an integrated portrait of 

the formation. Paleogeographic maps indicate a tropical, near-equatorial depositional 

environment (Scotese, et al, 1979). The analyses provide a more complete understanding 

of local environmental conditions existing during the deposition of the sediments and 

fossils, and contribute to a clearer overall picture of the processes at work in the region 

during the Pennsylvanian. 
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 In this study, Mansfield Formation outcrops in the Naval Surface Warfare Center 

(NSWC), Crane Division, in Martin and Greene Counties of southern Indiana are 

examined (Fig. 1). Outcrop locations were plotted on the US Geological Survey 7.5 

minute topographic series, Odon Quadrangle (1978), and their specific Universal 

Transverse Mercator (UTM) locations determined from this plot (Fig. 2). Outcrop HR-

150 is named for a gravel road formed when railroad tracks were abandoned and 

removed. The outcrop is located at the intersection of H-383 and HR-150 near Magazine 

2357 and faces HR-150. The UTM coordinates are 16S ET09444 01930 (16S, easting: 

05-09-444, northing: 43-01-930) and the approximate elevation is 165 m (540 feet) above 

sea level. Outcrop H-435, named for the road it faces, runs parallel to railroad tracks that 

pass directly in front of Magazines 2412 and 2413. The UTM location is 16S ET09099 

01190 (16S, easting: 05-09-990, northing: 43-01-190). The elevation is ~207 m (680 feet) 

above sea level. Geologic maps of the area showing surface elevations and underlying 

strata show very little stratigraphic tilt between the two locations (Kvale, 1992). 

Differences in surface elevation between the outcrops correspond to at most 2 m of 

differences in elevation of underlying strata, with a difference of <1 m most likely. Thus, 

H-435 is ~40 m stratigraphically higher than HR-150. HR-150 is ~1 km NNW of Outcrop 

H-435.  
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Study 
Location 

 

Figure 1: Geographical extent of the Mansfield Formation in Indiana (Gray, 1962). Crane NWSF is 
due west of Bedford. The approximate location of the two outcrops is marked with a single “X”. 
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Figure 2: Topographic relief of study area (from US Geological Survey, 1978). 

The Mansfield Formation 

 The Mansfield Formation in south-western Indiana consists largely of sandstones, 

siltstones, mudstones and gray shales, with several coal beds and an occasional thin 
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limestone bed (Gray, 1962; Hasenmueller and Hutchison 1986). The formation rests 

unconformably on the Kinkaid Limestone of the late Mississippian at its southern 

extreme and the Devonian New Albany Shale at the northern reaches of the formations; 

rocks below the unconformity increase in age from south to north. Because of the uneven 

nature of the unconformity, underlying rock formations can vary within a short 

geographical area (Gray, 1962). Rocks of the Brazil Formation of the Early 

Pennsylvanian mark the upper boundary of the Mansfield Formation. In areas where it is 

present, the Lower Block Coal marks the lower boundary of the Brazil Formation, 

identifying the point of contact of the two formations. South of Bloomfield, IN, the 

Lower Block Coal is absent, and determining the boundary between the two formations 

can be difficult. Hasenmueller and Hutchison (1986) include the Mansfield Formation as 

part of the Raccoon Creek Group. 

 Rocks of the Mansfield Formation were first discussed by Owen (1862). In his 

survey of the geological resources of Indiana, Owen described the whetstone beds of 

Hindostan, IN, and their commercial use as sharpening stones. Leslie (1862) described 

separately the Cannelton Coal, one of the major coal units that run through the formation. 

Hopkins (1896) described the Mansfield Sandstone in detail and Kindle (1896) included 

the Hindoston whetstone beds as part of the “Mansfield sandstone formation” (p.347). In 

the same report, Hopkins and Kindle identified many outcrops of sandstone as belonging 

to the Mansfield Sandstone and mapped the sandstone as a band stretching south 

southeast from Attica, in Warren County at the western Indiana border to Cannelton in 

Perry County at the banks of the Ohio River. The term “Mansfield Formation” first 

appears on a geological map of coal deposits in southern Indiana by Kottowski (1959), 
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who identified shale, thin coal beds, underclay and limestone as component members of 

the formation and noted that sandstones were locally present. 

 In describing the geology of the Huron area of south-central Indiana (~10km 

south of the outcrop discussed in this study) Gray, Jenkins and Weidman (1960) first 

used the terms “upper Mansfield” and “lower Mansfield” to differentiate trough and 

wedge crossbedded sandstones in the lower section from the wavy, thinly-bedded sand- 

and mudstones of the upper section. Gray (1962) described the formation in detail and 

identified “muddy” and graywacke sandstones, gray shales, mudstone, light gray clay, 

coal, sedimentary iron ore, limestone, and chert as major rock types of the formation. He 

divided the formation laterally into three distinct lithofacies: the Shoals Lithofacies, 

dominated by cross-stratified sandstones, the Bloomfield Lithofacies containing mostly 

gray shales, and the Cannelton Lithofacies comprised of mudstones and thick clays. 

Ridgeway (1986), identified nine major facies types in the formation: coarse-grained 

sandstone; coarse-to-medium-grained sandstone; fine-grained sandstone; medium-to-

fine-grained sandstone; interbedded shale and sandy siltstone; micaceous gray shale; 

iron-stained conglomerate; quartz pebble conglomerate; and planar cross-stratified 

conglomerate. 

 Hasenmueller and Hutchison (1986) list dark carbonaceous shale and crossbedded 

sandstone with quartz-pebble and chert conglomerates as major rock types of the lower 

part of the formation. They divide the upper part of the formation into two units near 

Shoals and three units in southwestern Indiana. The Shoals part contains a lower 

sandstone unit and an upper unit of shale and mudstone separated by the Pinnick Coal 

Member. The 3 units of the southernwestern Indiana part are the Cannelton Lithofacies 
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(siltstone and mudstone), the Shoal Lithofacies (cross-stratified sandstone), and the 

Bloomfield Lithofacies (gray shales). 

 Early descriptions of the stratigraphy of the Mansfield Formation concentrated 

largely on the coal beds. Logan (1922) identified the Shoals Coal and the Kirksville Coal. 

Franklin (1939) listed Pinnick Coal and French Lick Coal as units within the Mansfield 

Sandstones, and Gray (1962) listed many additional units, including the St. Meinrad, 

French Lick, Pinnick, Blue Creek, Mariah Hill and Shady Lane Coals, and the Fulda and 

Ferdinand Beds of the Lead Creek Limestone. Shaver and Smith (1974) identified and 

described two additional thin limestone beds near the top of the series. The lower bed, 

over the Mariah Hill Coal Bed, was described as dark and impure, and the upper bed, 

directly under the Lower Block Coal Formation in the area of study, as cherty. 

 The Mansfield Formation dates from the Pennsylvanian (Cumings, 1922). 

Summarizing earlier fossil studies, Gray (1962) equated the lower units of the formation 

to the middle of the Pottsville Series. Shaver and Smith (1974) placed the Mansfield 

Formation in the Morrowan Series, using the Mansfield/Brazil Formation division as the 

basis of Morrowan/Atokan division. However, Kvale, et al (2004) include the upper part 

of the Mansfield as part of the Atokan series and cite Peppers (1996) in dating it to the 

Westphalian and Namurian stages, the approximate European equivalents of the 

Morrowan and Atokan Series, based on palynological analysis. 

 Cumings (1922) defined the formation as containing all the rock above 

Mississippian-age rock but below the Brazil Formation. Additionally, he identified the 

Lower Block Coal Member as the rock directly above the formation, noting that north of 

Parke County the Lower Block Coal Member is absent or unidentifiable, making it nearly 
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impossible to separate the Mansfield Sandstones from the Brazil Sandstones. Kottowski 

(1959) used the term “Mansfield Formation” to describe all the rock above the 

Mississippian-Pennsylvanian unconformity and below the Lower Block Coal Member of 

the Brazil Formation, a term that has continued in use to this day. He noted that the lower 

boundary of the formation was marked by an unconformity atop Lower Carboniferous 

aged limestone, sandstone or shale. Gray (1962) noted that the unconformity marking the 

base of the Mansfield Formation cut deeper into the underlying rock to the north, 

reaching down into Late Devonian New Albany Shale at the extreme northern boundary. 

 Cumings (1922) correlated different units of the Mansfield Formation to the 

Caseyville Formation and lower part of the Abbott Formation of Illinois, the Caseyville 

and lower part of the Tradewater Formations of western Kentucky, part of the Pottsvillian 

series of Appalachia, and the Morrowan Series of the mid-continental area. Wanless 

(1955) identified units of the formation as equivalent to the Caseyville Formation of 

western Kentucky and southern Illinois, the Pottsville Formation of northern Illinois, and 

Coal Division I1 of Indiana (see also Wanless, 1939 and Wanless and Wright, 1978). 

Shaver and Smith (1974) equated the upper limestone bed to the Lead Creek Limestone 

Member of the Tradewater Formation in Kentucky. Thus, the rocks of the Mansfield 

Formation can be correlated lithostratigraphically to other rock units over a broad area in 

eastern and central United States. 

                                                 
1 The term “Coal Division I” has since fallen out of favor. 
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METHODOLOGY 

 Outcrops of the Mansfield Formation located at NWSF, Crane Division, were 

examined in the field and photographed. Individual units were measured from the base of 

the outcrop and developed into stratigraphic profiles. Rock samples were collected at ~10 

cm intervals and brought back to the laboratory for sedimentological analysis. Samples 

were examined under a binocular microscope for grain size, shape and sorting.  

 Samples for geochemical analysis of carbon, organic carbon and total sulfur were 

collected 20 cm apart or less from HR-150 and 10 cm apart or less from H-435. All 

exposed surfaces were removed before collection, and samples were wrapped in baked 

aluminum foil prior to grinding and analysis. Total organic carbon (TOC) data were taken 

from samples immersed in 1N HCL at 80ºC for 12-14 hours then filtered and recovered 

on baked glass-fiber filters. Total carbon (TC) and total sulfur (TS) data were taken from 

non-acidified ground samples. The samples were analyzed in an Eltra CS 2000 resistance 

furnace set to 1,450ºC. The Eltra CS2000 was calibrated with standards USGS SDO-1 

(10% C, 5.6% S) and Alpha Resource AR4019 (0.1% C, 0.1% S) and the calibration was 

checked after every 8 to 10 runs. Samples were analyzed in random order to prevent 

drifting. 

 Samples of trace fossils and associated rocks were collected for paleoecological 

interpretation and are currently housed in the Indiana University Paleontology collection.. 

All samples were labeled with location and stratigraphic unit data. Fresh coal samples 

were collected from H-435 and sent to Cortland Eble of the Kentucky Geological Survey 

for palynological analysis for the purpose of identifying the coal seam as of either 

Morrowan or Atokan age.  
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Specimens

 The specimens documented in this thesis are kept in the IU Paleontology 

Collections in the Department of Geological Sciences, Indiana University, Bloomington, 

IN 47405, USA. 
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RESULTS 

Stratigraphy

 Two outcrops of the Mansfield Formation in Crane NWSF are described in this 

study. HR-150 is most similar to the Bloomfield lithofacies described by Gray (1962) in 

that cross-stratified sandstones are the predominant lithology. The outcrop extends ~5.5m 

vertically and 30m laterally. Stratigraphically, this is the lower of the 2 outcrops under 

investigation. 

 HR-150 can be divided into two sections (Fig. 3): a lower wavy, flaser- and 

ripple-bedded siltstone/sandstone section less than 4 meters thick, and an upper section of 

approximately 1 m of laminated siltstones and bedded sandstones. The sections are 

separated by 2 layers of dark gray, friable siltstone (Units 13 and 14).  

 Unit 1 extends below the surface. Notes recorded in the field indicate that the 

lower siltstone/sandstone unit contains trace fossils at the base that gradually decrease in 

frequency upward, becoming sparse by the top of Unit 3. Biological activity becomes 

common again in Unit 4, and then generally remains sparse until the top of the outcrop. 

 Grains in the units below Unit 13 tend to be sub-angular silt to very fine sand and 

moderately sorted, with occasional wavy layers of poorly sorted material. Scouring and 

clay drapes are common in these lower units, with the upper boundary of the drapes often 

marked by iron staining. Many clay drapes, especially in Unit 3, contain flecks of mica 

grains. Above Unit 14 the grain size first diminishes to clay and then increases back to 

very fine sand. Grains become more rounded, and sorting varies from moderate to poor. 

Bedding planes are wavy, but become less wavy, almost planar, near the top of Unit 18. 
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 Trace fossils return in Unit 18, with a diverse assortment of burrows parallel to 

sub-parallel relative to bedding planes. Details of the trace fossils are presented in the 

Ichnology section. The top of unit 18 is covered with ~1m of soil. There are no carbonate 

rocks in the outcrop.  

 H-435 (Fig. 4) is ~3.5m in height and spans 10m laterally. Laminated siltstones 

and thinly bedded sandstones predominate. As such, the outcrop appears to represent a 

hybrid of the Bloomfield and Shoals Lithofacies as described by Gray (1962).  

 H-435 contains friable siltstone at the base. This unit extends below the surface. 

The top of the siltstone unit is marked by root inclusions and scouring, and it is covered 

by a coal layer that is in turn covered by layers of laminated siltstones and sandstones. 

Grains in the three layers directly above the coal seam (Units 3-5) tend to be well-sorted 

rounded silt to very fine sand. Units 5 and 6 are comprised of planar silty sandstone beds 

with clay settling out in drapes along with current—and occasionally starved—ripples. 

Beds of Unit 6 become wavy toward the top, and there is evidence of scouring. Iron 

concretions (1-2 mm) are common in Unit 6. Above these layers grain size and angularity 

increase while sorting decreases, becoming moderate to poor near the top layer. Evidence 

of rooting occurs in Units 8 and 9. Repeating cycles of varying lamina thicknesses appear 

in the middle and upper parts of Units 10 through 12. Laminae thickness averages ~1 

mm, but individual laminae are obscured in several units by cyclical appearances of 

biological activity in the form of vertical burrows. Units 11 and 12 contain planar beds 

between layers of burrows. Asymmetrical ripples appear in Unit 12, the top of the 

outcrop. 

 12



 Further details of the sedimentology and stratigraphy can be found in Appendix 

A.

 

Figure 3: Stratigraphy of HR-150 (UTM coordinates 16S ET09444 01930). The stratigraphic 
development of trace fossils in this outcrop can be found in the Ichnology section.
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Figure 4: Stratigraphy of H-435 (UTM coordinates 16S ET09099 01190). The stratigraphic 
development of trace fossils in this outcrop can be found in the Ichnology section. 
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Geochemistry

 The goal of the geochemical analysis was to infer the salinity of the water at the 

time of deposition. In the study, TS concentrations were used as a proxy for salinity. 

Sulfate concentration in water tends to vary with variations in salinity; average dissolved 

sulfate concentrations in marine water are ~28.2‰ compared to <1‰ for fresh water. 

Results of TC, TOC, and TS are listed in Appendix B.  

HR-150. TC and TOC from Unit 14, a thin layer of organic-rich friable siltstone 

with coal inclusions, are slightly under 13% by mass. All other carbon and sulfur values 

are very low, in many cases near the detection limit of the equipment. Mean TOC is 

below 0.1% and in no case above 0.4% by mass except for Unit 14. All sulfur values are 

below 0.2wt%, with most values well below 0.04% by mass. Slightly higher sulfur values 

were found in Units 1, 3, 8 and 15, but the mean TS value for the entire outcrop is 

0.03wt.%.  

 TOC/TS ratios vary from 76:1 in Unit 13 down to 1:1 in the lower half of the 

outcrop. The widest variations appear in the upper siltstone and sandstone units. In the 

lower sandstone units the ratio fluctuates from ~12.5:1 to 1:1, with a mean ratio of 5.5:1. 

Organic carbon levels closely approximate total carbon. All carbonate carbon values were 

less than the range of values reported for the low standard. Fig. 5 shows the TOC/TS 

ratios, TS and TOC percentages and the percent carbonate of TC for HR-150 

H-435.  Except for the coal seam (Unit 2), both TOC and TS levels are very low. 

Of 38 different samples collected, 33 samples showed TOC levels well below 1.0wt.%, 

with most samples at or below 0.2wt.%. Of the 5 exceptions, 4 samples were from Unit 2, 

a coal seam, where samples ranged from 51.4 to 66.8wt.%. The only other sample 
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containing more than 1.0wt.% TOC was taken from Unit 1, a unit of friable siltstone with 

rhyzocretians ~25 cm below the base of the coal seam. This unit contained 2.24% TOC 

by mass. Mean TOC values above the coal seam were 0.15wt.%. 

 As with HR-150, most of the carbon in the samples was organic in origin. 

Carbonate values were consistently near detection limits. Only two samples showed any 

measurable carbonate loss, one from a bedded sandstone unit and one from a laminated 

siltstone unit. Both samples had very low carbon values. For the sample from the siltstone 

unit the difference between TC and TOC was within the range of carbon values reported 

for the low standard. The sample from the sandstone unit showed a carbon loss slightly 

beyond the range of reported sample values, so it is likely that this sample did experience 

a small amount of carbon loss; adjacent units did not show any loss under acid treatment. 

 Non-coal TS levels were all at or below 0.04wt.%, near the detection limit of the 

Eltra CS2000 TOC/TS analyzer, with the exception of one sample (0.11wt.%) taken from 

Unit 5, a unit of laminated siltstone notable for the presence of many trace fossils, 

including tetrapod tracks. The mean TS value above the coal seam was 0.02wt.%. 

TOC/TS ratios varied widely, from 122.4:1 to 1.7:1, with the highest values in the coal 

seam and lower siltstone unit. Above the coal seam the highest ratio was 23:1, with 9.5:1 

as the mean. Thirty-four of 38 samples had TOC/TS ratios above 4:1, and 21 samples had 

ratios above 10:1. Linear regression analysis of the ratios using SPSS software shows a 

correlation of 0.07, which implies almost no correlation; the TOC and TS levels were 

virtually independent of each other. Fig. 6 shows TOC/TS ratios, percent TS and TOC, 

and percent carbonate of TC for H-435. 



 
Figure 5: TOC/TS ratios, TS and TOC percent and percent carbonate of HR-15
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Figure 6: TOC/TS ratios, TS and TOC percent and percent carbonate of H-435
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Palynology 

 Lycopod tree spores are the dominant palynomorph, with significant amounts of 

tree fern and calamite spores and cordiate pollen. Among the lycopods, Lycospora 

granulata is the predominant form, followed by L. pusilla, L. orbicula and L. 

micropapillata. Punctatisporites minutus and Punctatosporites rotundus are the major 

tree ferns represented.  Laevigatosporites minor is the most numerous species of calamite 

and Florinites mediapudens the most common cordaite (C.F. Eble, personal 

communication, 2006). 

 The results of a statistical count of 250 palynomorphs are presented in Table 1. 

Data from C.F. Eble, 2006. 
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Table 1: Palynology of coal samples from H-435. Data from C.F. Eble, 2006. 

TAXON                                     % 
Lycospora pellucida                1.2 
L. pusilla                         9.2 
L. granulata                     37.6 
L. orbicula                        5.2 
L. micropapillata                  4.4 
Granasporites medius              1.2 

Total lycopod tree spores      58.8 
Cirratriradites saturni            0.4 
Endosporites globiformis          0.8 

Total small lycopod spores        1.2 
Punctatisporites minutus         16.0 
Punctatosporites minutus          0.8 
P. rotundus                        7.6 
Laevigatosporites minimus       0.4 

Total tree fern spores    24.8 
Granulatisporites adnatoides   0.4 
Lophotriletes microsaetosus     0.4 

Total small fern spores     0.8 
Calamospora pedata                0.8 
C. microrugosa              0.4 
Laevigatosporites minor    6.0 

Total calamite spores       7.2 
Florinites florini                 1.2 
F. mediapudens              5.6 

Total cordaite pollen               6.8 
Tantillus triquetrus               0.4 

Total unknown forms        0.4 
 

Ichnology

 True fossil data were very sparse in the two outcrops, although fossilized plant 

fragments were common in some units. Localized trace fossil data, however, were 

common to abundant in several units of both outcrops. 

 HR-150. The base of HR-150 contains numerous burrows, most of which appear 

to be Scalarituba isp. (Häntzschel, 1975, pp.W103-W106), (Fig. 7). Burrows are concave 

epirelief in bedding surfaces, ~6 mm wide and as much as 36 cm long, with backfill ~3 

mm that comprise the burrow fill. Burrows are horizontal to oblique to bedding surfaces. 
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These burrows represent the feeding behavior (fodichnia) of a sediment-ingesting worm 

or wormlike organism (Häntzschel, 1975). 

 

Figure 7: Arrows are pointing to Scalarituba isp. at the base of Unit 1 of HR-150. Photograph taken 
in the field. 

 

Between Units 1 and 4, Planolites isp. (~3 mm wide and <6 cm long) and Skolithos isp. 

(~2 mm wide, <3 cm long) appear widely spaced horizontally and vertically. Other larger 

horizontal and oblique meandering burrows may also be present but are indistinct, and 

their biological origin is often difficult to confirm (Fig. 8). Plant material, in particular 

large root structures, is found in Units 1 and 2 (Fig. 9). 
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Figure 8: Field photograph of an example of Asterosoma, (at arrow) common in Units 1-4 of H-150. 

 

Figure 9: Field photograph of an association of plant roots (center to upper right of photograph) 
within their trace fossils, rhizoliths, in Unit 2 of HR-150. 
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 Clay drapes in the lower part of Unit 4 contain numerous very small (<0.5 mm 

diameter) horizontal straight and meandering trails in convex hyporelief on surfaces (Fig. 

10). The morphology is somewhat similar to Treptichnus isp., but the pattern observed is 

more discontinuous in these examples. These trails are generally less than 8 mm long, but 

occasional straight trails extend up to 3 cm. The diameters tend to be consistent across the 

entire length, tapering to points at the very end of the trail. Grain size and shape inside 

the burrows does not appear noticeably different from those outside the burrows. Trace 

fossils are common at the base, but are less common upsection; they are rare above Unit 

4.  

 

Figure 10: An example of small horizontal trails assignable to Treptichnus isp. in reversed relief in 
Unit 4 of H-150. Specimen #19000. 

 A few similar vertical and meandering burrows reappear near the boundary of 

Units 8 and 9; they are uncommon and widely spaced. Individual Planolites (a worm 
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burrow) meandering burrows vary in diameter from 2 to 3 mm over their length. Units 11 

through 14 contain abundant in situ roots and other unidentifiable plant material. Unit 18 

is moderately bioturbated with Planolites (Fig. 11) up to 6 mm in diameter and 7.5 cm 

long, abundant in layers interspersed with groups of thin laminae. 

 

Figure 11: Planolites, isp. (at arrows) from Unit 7 of HR-150. Specimen #19007. 

 
 H-435. Tree roots and other plant material are common near the top of Unit 1 just 

below the coal seam. Unit 5 contains plant material and trace fossils, including 

meandering burrows (convex epirelief, 1 mm diameter, ~4 cm long), Treptichnus 

(Buatois, et al, 1998, Fig. 4.6) branching trails (concave epirelief, 3 mm diameter 20 cm 

total length; Fig. 12), zig-zag trails, attributable to Haplotichnus, (concave epirelief, ~1.5 

mm diameter; Fig. 13), meandering tracks and trails, interpreted as insect repichnia or 

pascichnia (Buatois, et al¸1997a; 1998), and tetrapod tracks (Colbert and Schaeffer, 1947; 

Peabody, 1959). Insect tracks are generally 0.5 mm or smaller, forming trails frequently 
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up to 7 cm long (Fig. 14). Tetrapod tracks, assumed amphibian, (Figs. 15 and 16) are 3.5 

cm wide at their widest point from inside toe tip to outside toe tip and 2.5 cm long from 

base of ped to tip of longest digit. The peds contain 5 digits and the manus 4. 

 

Figure 12: Drawing of Treptichnus trail. Total length is ~20 cm. 

 

 
Figure 13: Drawing of zig-zag trail, attributable to Haplotichnus. 
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Figure 14: Close view up of Treptichnus isp. from Unit 5 of H-435.  (Coin at upper right is a U.S. 
dime.)  Specimen #19001. 

 26



 
Figure 15: Example of tetrapod tracks from H-435. Organized and disorganized trails of Treptichnus 
are also visible on the bedding plane. Specimen housed at Indiana Geological Survey. 

 
Figure 16: Another example of tetrapod tracks from H-435, with cm bars in background. These 
tracks are the same size as those of Figure 12.  Specimen 19002. 
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 Plant material is common at the top of Unit 5 and in Unit 6 in repeating intervals 

(Fig. 17). Plant roots are also found in Unit 9. Large well-preserved molds of 

Lepidodendron bark are found near the top of Unit 12 (Fig. 18). The preservation of fine 

details and intact delicate plant parts suggests that these plants were preserved in situ. 

 

Figure 17: An example of plant material found in Unit 6 of H-435. Numbers in scale bar denote cm. 
Specimen #19003. 
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Figure 18: Lepidodendron mold from Unit 12 of H-435. Note preservation of fine bark details. 
Specimen #19004. 

 Units 11 and 12 display layers of abundant Skolithos separated by many thin 

laminae (Fig. 19). Skolithos are vertical to nearly vertical and are very dense in these 

units; 20 burrows packed together within a square centimeter are not unusual. Skolithos in 

clusters are generally of equal length. The average length of the burrows is ~35 mm but 

lengths vary from less than 1 cm up to 7 cm. Widths range from 1 to 5 mm, with the 

average width 1.5–2 mm. Burrows are vertical to nearly vertical. Most are of uniform 

widths along their lengths, but burrows that broaden near the top are common (Fig. 20). 

Many burrows are flanged, but most are not. Unflanged burrows may be a reflection of 

the quality of preservation rather than original morphology. Burrows appear unlined, with 

the material inside the burrow similar to that outside it. Most burrows form concave 

 29



epirelief impressions on the surface and convex hyporelief on the soles of the specimens 

(Fig. 21). 

 Fig. 22 displays the fossil and ichnology data of both outcrops. 

 

Figure 19: Typical Skolithos from Unit 11 of H-435. Specimen #19005. 
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Figure 20: An example of "flanged" burrows (Skolithos) from Unit 12 of H-435.  The slight curve of 
these burrows is unusual. Most are more nearly vertical as shown in Figure 19. Specimen #19006. 
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Figure 21: Top view of the same Skolithos sample as Figure 19, (Specimen #19005) showing concave 
epirelief where burrows intersect the bedding plane. 
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Figure 22: Ichnology of HR-150 and H-435. 
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DISCUSSION 

 The most abundant spore identified from the coal samples collect from H-435 

(Unit 2) is that of Lycospora granulata (37.6% of all identified spores). Lycospora 

granulata predominance is characteristic of the Morrowan and early Atokan stages of the 

early Pennsylvanian; by the middle Atokan L. granulata is succeeded in predominance 

by L. micropapillata (Phillips and Peppers, 1984). Since L. micropapillata comprise only 

(4.4%) of the palynomorphs examined, the upper stratigraphic limit of H-435 is thus 

constrained to the middle Atokan. Both Endosporites globiformis and Punctatosporites 

minutus first appear in Illinois basin coals during the early Atokan (Peppers, 1996), 

restricting the age of the sample to the early- to mid-Atokan. The coal layer of H-435 

from which the samples were taken therefore lies between the St. Meinrad and Blue 

Creek coals (C.F. Eble, personal communication, 2006), placing the beginning of the 

Atokan series below the Blue Creek Coal. This appears consistent with evidence cited by 

Magano, et al, (2001) of other outcrops to the south of H-435 that have also been dated 

via palynology to the Atokan. 

 The St. Meinrad Coal lies within the lower 1/3 of the Mansfield Formation; the 

Blue Creek Coal within the top 1/3. Thus H-435 lies somewhere near the stratigraphic 

middle of the formation. The formation extends between 50m and 100m meters vertically 

in the area of study (Gray, 1962; Barnhill, 1992; Kvale and Barnhill, 1994). Since HR-

150 is ~40m lower stratigraphically than H-435, it can be assumed that HR-150 lies in the 

lower 1/3 of the formation. As such, HR-150 must date to the same age or older than HR-

435. 
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 Low carbon values undermine confidence in using TOC/TS ratios as the sole 

indicator of salinity (Berner and Raiswell, 1984). Considering TS data as a proxy for 

salinity in combination with TOC/TS ratios helps to strengthen interpretations. Table 2 is 

a list of the salinity and sulfur concentration of sediments collected from different 

locations around the Chesapeake Bay.  

Table 2: Sulfur and associated salinity concentrations from Chesapeake Bay sediment samples (from 
Berner and Raiswell, 1984) 

Site Sediment Depth (cm) S(wt.%) Salinity (‰) 
FB 40-42 0.14 <1 
FB 64-66 0.38 <1 
HG 58-59 0.38 <1 
HG 59-60 0.13 <1 
904N 50-55 0.63 14 
904N 55-60 0.38 14 
904N 60-65 0.99 14 
834G 65-70 1.30 19 
834G 70-75 1.18 19 
834G 90-95 1.19 19 
818P 45-50 1.36 21 
818P 60-65 1.30 21  

 
  Salinities above 19‰ (average marine concentration is ~28.2‰) show sulfur 

concentrations above 1wt.%, which are easily distinguished from the concentrations for 

freshwater (<1‰ salinity). The trend is similar in rocks of the Pennsylvanian. Mastalerz, 

et al, (1997, 1999) examined coals and rocks from the Mansfield Formation. Rock 

samples containing <0.08wt.% TS were interpreted as reflecting freshwater deposition, 

whereas those above 0.08wt.% TS as brackish-to-marine depositional environments. 

Coals bearing <1.0wt.% TS—described as low sulfur—were interpreted as having been 

inundated by freshwater2; coals >2.0wt.% TS reflect subsequent marine influence. In 

contrast, Algeo and Maynard, (2004) and Algeo, et al, (2004) examined marine-
                                                 
2 The authors state an exception in the case of coals shielded from marine influences by thick layers of fine-
grained sediments; that is not the case with the coal examined in the present study. 

 35



influenced shale. TS values of shales analyzed in both studies generally contained 

between 1 – 3wt.% TS, with the exception of shales formed in dysoxic water that 

contained between 0.4 - 2.0wt.% TS. The consistently low TS values of the samples 

analyzed (coal <1wt.%; all other samples 0.2wt.% or less) in this study indicate that 

marine input, and therefore salinity, was consistently low to negligible during the 

depositional history of both outcrops. 

 Although trace fossils generally reveal limited morphological information about 

the causative organism, they can give insights into behavior (Rhoads, 1975, pg. 147). 

Often the behavior captured in the traces limits the range of depositional environments 

under which that behavior can occur. Because trace fossils are virtually always found in 

situ, they can yield precise, detailed information about environmental conditions during 

the period of deposition (Frey and Pemberton, 1984; Hasiotis, 2002). A lack of positive 

taxonomic identification of the trace fossils collected at Crane NWSF limits but does not 

preclude inferences about depositional environments. Both outcrops show evidence of 

changing environmental conditions, where water levels and current energy appear to vary 

often over the depositional history of the outcrops. 

HR-150 

 The lower siltstone/sandstone units of the outcrop are indicative of a shallow 

water environment. Although flaser and wavy bedding are typical of tidal-flat deposits 

(Archer and Maples, 1984; Buatois, et al, 1999), scouring suggests occasional instances 

of stronger current (or wave) energy. Clay drapes are formed from the settling from 

suspended loads during slack currents (Buatois, et al, 1999). All are typical 

characteristics of varying paleocurrent strength, possibly reflecting variations in fluvial 
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input due to rainfall or tidal influences (Kvale and Barnhill, 1994). This section (Units 1-

9) is similar to Facies I of the Kanawha Formation of West Virginia, described by 

Martino (1989), and the fine-grained sandstone facies of the Morrow Sandstone described 

by Buatois, et al, (1999), both interpreted as indicative of a fluviodeltaic channel. The 

section appears to be a hybrid of the rooted mudstone, siltstone and sandstone facies and 

the wavy-bedded and flaser-bedded sandstone facies described by Barnhill (1992; see 

also Barnhill and  Hansley, 1993 and Kvale and Barnhill, 1994) and interpreted as a 

shallow, intertidal or supratidal environment. Ripples represent unidirectional current 

flow, suggesting that this channel can be distinguished from the stratigraphically-similar 

estuarine channel (Martino, 1994). 

 Scalarituba, found at the base of HR-150, and burrows in overlying units, are 

often associated with the Scoyenia ichnofacies, which is characterized by low diversity 

and a preponderance of fodichnia (Frey and Pemberton, 1984; Buatois and Mangano, 

2002). The ichnofacies is attributed to shallow, subaqueous environments of very low 

salinity, relatively high energy, and occasional subaerial exposure (Buatois, et al, 1997b), 

thus correlating well with the interpretation of the stratigraphy.  

 The TOC/TS ratios and low TS values (Fig. 5) of Units 1 through 9 are indicative 

of freshwater conditions, with possible brief brackish-to-marine water incursions in Units 

1 and 3 as indicated by a slight elevation of TS. The low carbonate levels, which are 

generally near detection limits, support the interpretation and suggest a strong fluvial 

influence. This could account for the low amount of carbon and sulfur. Plant roots and 

other materials often associated with, but distinct from, the Scoyenia ichnofacies suggest 

a temporary reduction of clastic input (Barnhill and Hansley, 1993).  
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 Above the base of Unit 9 the TOC/TS ratio increases and fluctuates more widely. 

This is typical of freshwater systems (Berner and Raiswell, 1984). The fresh water (with 

occasional marine or brackish incursions) interpretation of Units 10-18 is supported by a 

lack of pyrite observed in the samples collected. 

 Units 13 through 16 are characterized by friable texture and the presence of 

fossilized plant roots. This is indicative of paleosols (Retallack, 1988), and represents an 

interfluvial environment (Buatois, et al, 1999). An increase in TS value and dip in 

TOC/TS ratio appears at Unit 14, which contains friable black siltstone with coal 

inclusions and overlies a paleosol. It is possible this is the result of saline poisoning and 

sudden burial of the vegetation and inundation with marine water, perhaps due to a storm 

event or flooding. The organic-rich Unit 14 is overlain by the organic-poor Units 15 and 

16. Heavy iron staining in these units suggests a predominantly saturated environment.  

 Two spikes in the percentage in carbonate carbon appear, one at the Unit 10-11 

boundary and the other near the base of Unit 18. These could be interpreted as possible 

brackish or marine incursions, but that interpretation is not supported by correlative 

increases in TS values. With overall carbon levels so low, the spikes in the carbonate 

percentage may not be particularly significant or related to changes in pH of the system. 

 The return of meandering Planolites isp. near the top of the outcrop may point to 

a return of fluvial or marine tidal activity. However, Planolites is a facies-crossing 

ichnofossil (Hakes, 1976). Thus, the strength of conclusions about depositional 

environments drawn by its presence in the ichnofossil record must be tempered. The 

wavy beds of Unit 17 suggest a brief return of periodic siliciclastic input which, by the 

base of Unit 18, has apparently transformed the region into a shallow tidally-influenced 
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estuarine-like environment (Barnhill, 1992; Barnhill and Hansley, 1993; Kvale and 

Barnhill, 1994), possibly caused by settling of underlying sediments or increasing sea 

level. Alternating cycles of thin laminae and abundant bioturbation are typical of seasonal 

periods of light and heavy sediment input or other biological stresses.  

H-435 

 TOC/TS ratios are generally lower than for HR-150, but are still above fully 

marine levels in most cases. These ratios are interpreted as representing a fresh-to-

brackish water environment. The friable texture and rhyzocretions near the top of Unit 1 

are paleosol indicators. In this instance the paleosol is often interpreted as evidence of a 

subaerial or shallow, tidally influenced subaqueous environment (Retallack, 1988). Iron 

staining and the marshy environment evident from the overlying coal seam identify a 

predominantly wet or water saturated environment. 

 Although above background level, TS in the coal seam is still very low, between 

0.6-0.7wt.%, indicating a low sulfur coal. It is generally accepted that Pennsylvanian low 

sulfur coals represent peat mires inundated by freshwater incursions, yet the sudden 

increase in TS in this layer above background levels appears to suggest some marine 

influence. However, it is assumed that Pennsylvanian coal-producing plants did not 

tolerate prolonged exposure to salt water (Hakes, 1976), implying brackish- to freshwater 

condition in the immediate area (Martino, 1996). Other possible explanations for the 

elevated TS levels include organic plant sulfur (Hackley and Anderson, 1986), sulfate 

reducing bacteria (Spiker, et al, 1994), or detrital influx (Eble, et al, 1994). The absence 

of a high sulfur signal (i.e. >~2.0%) suggests that any inundation was by fresh, or 
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possibly brackish, water. This supports the interpretation of a fresh-to-brackish water 

depositional environment for the overlying strata (Mastalerz, et al, 1997). 

 Coals are interpreted to represent periods of prolonged wetness, whereas 

siliciclastic flux is more typical of seasonal rainfall (Martino, 1996). Therefore, the 

change from coal to silty, bedded sandstone may indicate a change in precipitive patterns, 

although the overall picture is of marine transgression. Kvale and Barnhill, (1994) 

attribute the association of Pennsylvanian coals and tidal deposits to freshwater, 

supratidal deposition. The coal seam of H-435 is overlain by thinly bedded sandstones 

that would presumably allow the migration of sulfur via contact with more highly saline 

water.  

 The insect and tetrapod tracks in Unit 5 suggest at least occasional subaerial 

exposure. One possible interpretation is of a supra- or inter-tidal flat (Mangano, et al, 

2001). This is consistent with the coal-to-siliciclastic lithology. The predominance of 

deposit- over suspension-feeding organisms may be indicative of a low-oxygen 

environment (Beynon and Pemberton, 1992). Martino (1994) reports plant material as 

common in thinly bedded-siltstone sandstone facies of the Kanawha Formation, which he 

interprets as a low-mid tidal flat/mouth bar. Despite the sedimentological similarity to 

that of the Keota site described by Lucas, et al, (2004), differences in ichnology, in 

particular the low diversity and the absence of arthropod trackways, preclude positive 

classification of the assemblage as representative of an exclusively marine or freshwater 

environment. Fresh-water tidal flat systems have been identified in other sections of the 

Mansfield Formation (Kvale, et al, 1989; Kvale and Mastalerz, 1998). Low TS 

concentrations suggest this unit may reflect a similar depositional environment. 
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 Spikes in the percentage of carbonate carbon above the coal seam (Units 7, 8, 11 

and 12) may indicate brief marine incursions, although low carbon values undermine 

confidence in the interpretations. Moreover, TS values are well below those generally 

associated with marine environments. Taken together, the low sulfur in the coal and 

overlying strata appear to preclude a marine depositional environment. 

 The overall sequence of paleosol changing to coal to wavy-bedded sandstone and 

laminated siltstones evident in Units 1-6 suggests a marine transgression that ultimately 

created a shallow subaqueous environment influenced by paleocurrents, as indicated by 

the ripples and starved ripples of Units 5 and 6. These features are all characteristic of 

shallow inter- and subtidal or sand/mud flats (Barnhill, 1992; Barnhill and Hansley, 1993; 

Lucas, et at, 2004).  

 The bedded siltstones and sandstones above the coal seam to the top of the 

outcrop appear to exhibit both current and tidal influences. There is evidence of rooting 

in the thin, wavy beds of Units 8 - 10. Rooting in tidal-influenced beds is indicative of a 

vegetated tidal flat (Kvale and Barnhill, 1994).  

 The change from the horizontally oriented tracks and trails in Units 5 and 6 to 

vertical burrows in the Units 11-12 suggests a shift from deposit- to suspension-feeding 

fauna, typical of increasing depth and thus marine transgression (Hakes, 1977). Packets 

of thin laminae alternating with thick layers of vertical burrows in the two units are taken 

as evidence of tidal influences and variations in sediment input (Ekdale, et al, 1984, 

pg.90), typical of tidal flats (Kvale and Barnhill, 1994; Martino, 1994; Mangano, et al, 

2001). Beynon and Pemberton (1992) attribute this type of lamina/bioturbation 

alternation to variations in energy, with laminated zones reflecting higher-energy events, 
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and consequent higher siliciclastic input, and bioturbated zones indicative of lower 

current velocities. The ichnology of the two upper units is typical of the Skolithus 

inchnofacies, which is characterized by high abundance and low diversity of ichnofossils 

(Frey and Pemberton, 1984). This ichnofacies is associated with intertidal zones, shifting 

sand (Ekdale, et al, 1984, pg. 75), brackish water (Pemberton and Wightman, 1992; 

Martino, 1994; Buatois, et al, 1998), fluctuating salinity and energy (Martino, 1994), and 

episodic sedimentation (Maples and Suttner, 1990). Such characteristics are typical, 

although by no means conclusive, proof of brackish-water, back-estuarine systems 

(Buatois, et al, 1999). The asymmetrical ripples of Unit 12, indicative of a low-energy 

environment, suggest a decrease in current influence, also typical of estuarine 

environments. 
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CONCLUSIONS 

 The two outcrops of the Mansfield Formation at Crane, NWSF, examined in this 

study show evidence of changing environmental conditions during the time of their 

deposition. The stratigraphy of HR-150 is typical of fluvial channels in Units 1-12. Low 

TS and carbonate values suggest fresh water influence. Ichnology indicates shallow 

water; trace fossil diversity is moderate, but density is low, supporting a fresh water 

interpretation. Units 13-16 contain friable siltstone, interpreted as paleosols, and plant 

roots. TS remains low despite one small spike at organic-rich Unit 14. Such evidence is 

consistent with a subaerial vegetated interfluvial zone. The upper section of the unit 

consists of packets of thin laminated siltstones interspersed with thick layers of densely 

packed vertical burrows, typical of fresh-to-brackish tidal flats. 

 H-435 has a friable siltstone layer at the base, with abundant plant roots toward 

the top of Unit 1, which is overlain by a coal seam. Low TS values indicate freshwater 

influence. A reasonable interpretation is of a subaerial vegetated interfluvial zone 

becoming marshy. Alternating packets of thick and thin laminated silty sandstones 

overlie the coal seam to the top of the outcrop. Trace fossils in Unit 5 are typical of 

occasional or periodic subaerial exposure, suggesting a tidal flat. Packets of laminated 

silty sandstone alternating with thick layers of abundant vertical burrows in Units 11 and 

12 point to periodic variations in siliciclastic input and possible changes in salinity, 

although TS remains low in these units. These upper units are interpreted as a shallow 

fresh-to-brackish water environment.  

 Both outcrops are typical of Pennsylvanian marginal-marine environments. The 

change in HR-150 from fluvial channel to vegetated flat to tidal flat to shallow 
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subaqueous flat is partially duplicated in H-435, which appears to change from vegetated 

flat to marsh to tidal flat to shallow subaqueous flat. Taken together, these changes 

suggest pulses of marine transgression over the periods of deposition. 

 



Appendix A: Sedimentology of Outcrops, Crane NWSC 
HR-150 
Unit Lithology & 

Color 
 

Thickness Boundaries
 

 Lamina/ 
bed  
thickness 
range 

Lamina/ 
bed shape 
 

Grain size Grain 
 shape 

 

Sorting Notes 
  

Clay drapes throughout, 
possible tidallites 

Moderate Sub-rounded Horizontal, 
continuous 

Silt to fine 
sand 

Silty, bedded 
sandstone; 
beige, with Fe 
staining 

76 cm Wavy upper, 
horizontal 
lower 

1-60 mm, 
alternating 
series of 
thin to 
thick to 
thin  

18, 
top   

    
    
     

----- ------------ --------------- ------------------  
Well 
sorted 

Sub-rounded Silt to very 
fine sand 

------------------- ------------ mid 
 Light gray,  

with Fe 
staining  

  
     
------------ --------------- ------------------  ----- 

------------------- Well 
sorted 

Sub-angular Clay, some 
silt, very little 
very fine sand. 
Coarsening 
upward 

------------ base 
Lamina 
thinner at 
base 

Reddish-brown 
 

17 Muddy 
laminated 
siltstone, 
brownish-gray 
to orange 

11 cm Horizontal 
upper, wavy 
lower 

3-12 mm Horizontal Clay and silt Rounded Well 
sorted 

Friable 

16 Muddy 
laminated 
siltstone, 
medium gray 
with Fe 
staining 

14 cm Wavy upper 
and lower 

1-3 cm Wavy Clay to very 
fine sand 

Sub-rounded Poorly 
sorted 

Very friable 

15 Friable, muddy 
siltstone, gray, 
with extensive 
Fe staining 

6 cm Wavy upper 
and lower 

  Clay, some 
silt, some very 
fine sand 

Angular Moderate Very friable 

 45



 
HR-150 
Unit Lithology & Thickness

Color 
 

 Boundaries
 

 Lamina/ 
bed  
thickness 
range 

Lamina/ Grain size
bed shape 
 

 Grain
 

 
shape

Sorting
 

 

 Notes 
  

14 Organic-rich 
friable 
siltstone, black, 
with Fe 
staining 

Varies, 
2.5 cm 
average, 
thickens 
to 10 cm 

Wavy upper 
and lower 

  Clay  Well 
sorted 

Extensive coal inclusions 

13 Muddy friable 
siltstone, 
greenish-gray 
at base, gray at 
middle, dark 
brownish-gray 
at top, with Fe 
staining 

39 cm Wavy upper 
and lower 

  Clay to fine 
sand, less sand 
above base 

 Very 
poorly 
sorted 

Very friable, coalification, 
rhyzocretions 

12 Silty sandstone, 
gray with 
brown staining 

5 cm Wavy upper 
and lower 

  Clay to fine 
sand 

Sub-rounded Poor Plant (root?) inclusions 

11 Silty sandstone, 
orange 

4 cm Wavy upper 
and lower 

  Silt to very 
fine sand 

Sub-rounded Well 
sorted 

 

10 Cross-bedded 
sandstone, 
beige to 
reddish-tan 

94 cm Wavy upper 
and lower, 
upper 
boundary 
scoured 

 Wavy, 
discontinuous, 
some ripple 
structures, 
some flaser 
bedding 

Silt to very 
fine sand at 
base, very fine 
sand at top 

Sub-rounded Moderate 
at base, 
well 
sorted at 
top 

Massive scouring at 47 
cm and 67 cm from base 

9, 
top 

Muddy, silty, 
bedded 
sandstone; 
reddish-brown 

23 cm Wavy upper, 
horizontal 
lower; upper 
boundary 
indistinct in 
places 

Up to 5 
cm 

Wavy, 
discontinuous 

Silt to very 
fine sand  

Sub-angular Moderate   
  

 ------------ ------------------ --------------- ------------ 
 Lamina, 

up to 1 
mm 

Clay to fine 
sand 

Angular Poorly 
sorted ----- ------------------- 

base gray   
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HR-150 
Unit Lithology & Thickness

Color 
 

 Boundaries
 

 Lamina/ 
bed  
thickness 
range 

Lamina/ Grain size
bed shape 
 

 Grain Sorting
 shape 

 

 Notes 
  

8 Cross-bedded 
sandstone, light 
gray to tan to 
reddish brown 

29 cm Horizontal 
upper, wavy 
lower 

Lamina to 
thin beds 

Wavy, non-
parallel, 
discontinuous, 
often indistinct 

Silt to fine 
sand 

Angular Poorly 
sorted 

Evidence of dramatic 
scouring 

7 Laminated 
siltstone, light 
gray 

29 cm Wavy upper, 
horizontal 
lower, often 
indistinct in 
places 

Less than 
1 mm to 5 
cm.  

Wavy, non-
parallel, 
discontinuous 

Silt to very 
fine sand 

Sub-rounded Moderate Beds thinner at top and 
bottom, thicker in middle 

6 Silty cross-
bedded 
sandstone, light 
tan, Fe staining 

60 cm Horizontal 
upper,  
indistinct in 
places, 
slightly 
wavy lower 

 Wavy, 
discontinuous, 
non-parallel, 
ripples 

Silt to very 
fine sand 

Sub-angular Moderate Wavy amalgamation 
surface, 30-41 cm from 
base; evidence of 
scouring, deep in places 

5  Silty cross-
bedded 
sandstone, light 
brown 

21 cm Slightly 
wavy upper 
and lower 

2 mm to 9 
cm 

Wavy, 
discontinuous, 
non-parallel 

Silt to very 
fine sand 

Sub-rounded Moderate Upper boundary marked 
by 10-12 layers of thin, 
discontinuous lamina, 
indistinct in places 

4 Laminated 
siltstone, light 
gray 

58 cm Slightly 
wavy upper 
and lower 

Less than 
1 mm to 5 
cm 

Wavy, non-
parallel, 
discontinuous 

Silt Sub-rounded Well 
sorted 

Alternating series of 
thick, then thin, then thick 
beds, hummocky? 

3 Bedded 
sandstone, light 
gray 

17 cm, 
widens to 
30 cm 
north, 
pinches 
out south 

Wavy upper, 
horizontal 
lower 

Less than 
5 mm, 
with very 
dark clay 
drapes, 
less than 1 
mm 

Wavy, non-
parallel, 
discontinuous 

Very fine sand Sub-angular Well 
sorted 

 
 
--------------- ------------ 
Angular Poorly 

sorted 

 47



HR-150 
Unit Lithology & Thickness

Color 
 

 Boundaries
 

 Lamina/ 
bed  
thickness 
range 

Lamina/ Grain size
bed shape 
 

 Grain Sorting
 shape 

 

 Notes 
  

2 Silty cross-
bedded 
sandstone, 
medium gray, 
with FE 
staining 

40 cm Horizontal 
upper, 
slightly 
wavy lower 

1 – 4 mm Wavy, non-
parallel, 
discontinuous 

Silt to very 
fine sand 

Sub-angular 
to sub-
rounded 

Well 
sorted 

Dark brown clay drapes 

1 Laminated 
siltstone, 
medium gray 

24 cm Slightly 
wavy upper 

Ca. 1 mm Wavy, non-
parallel, 
discontinuous 

Silt Sub-angular Well 
sorted 
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H-435 
Unit Lithology Thickness

 
 Boundaries

 
 Lamina/bed 

thickness 
range 

Average 
lamina/ 
bed 
thickness 

Lamina/ Grain Sorting
bed 
shape 
 

Grain 
size 
 

shape 
 

 Iron/
 

 Notes 
manganese  
staining? 
 

12 Bedded 
sandstone 

18.5 cm Flat at base, 
rounded at 
top 

Bottom 12 
cm – many 
smaller beds, 
4–11 mm. 
Thicker 
toward 
center of unit 

? Wavy Fine at 
base to 
medium at 
top 

Sub-
angular 
at base 
to 
angular 
at top 

Well 
sorted at 
base, 
moderately 
sorted at 
top 

Yes, at top 
1.5 cm. Also 
vertical 
staining 

Organic 
material at 
top. Top 
ledge-
forming, 
resistant to 
weathering. 
Straight 
vertical 
burrows, 5-
55 mm 
long, 1.5-2 
mm wide. 

11 Bedded 
sandstone 

70 cm Wavy at 
base, flat at 
top 

4-70 mm 12 mm Flat, 
horizontal 

Fine Sub-
rounded 

Well 
sorted 

Yes, top 2 
cm, thinly 
laminated. 

Straight 
vertical 
burrows 
start 18 cm 
from base, 
5-55 mm 
long, 1.5-2 
mm wide 

Packages of 
alternating 
think and 
thin beds, 8-
11 cm thick 

Contains 
occasional 
vertical 
layers 

Some mica 
10 Silty, 

bedded 
10 cm  Wavy 4-20 mm, 

thinning 
upwards 

5 mm Slightly 
wavy, 
distinct 
tops and 
bottoms 

Silt to fine 
sand, 
some 
medium 
sand at 
base  

Sub-
rounded 
at base 
to sub-
angular 
at top 

Well 
sorted at 
base to 
moderately 
sorted at 
top 

Yes, at top, 
fine grained 

De-
watering 
structures? sandstone 
Some clay 

9 Bedded 
sandstone  

4 cm Wavy  <1-2 mm 1 mm Thin, 
wavy 

Fine Angular Poorly 
sorted 

Yes, 
throughout 

Some clay, 
organics 
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H-435 
Unit Lithology Thickness

 
 Boundaries

 
 Lamina/bed 

thickness 
range 

Average 
lamina/ 
bed 
thickness 

Lamina/ Grain Sorting
bed 
shape 
 

Grain 
size 
 

shape 
 

 Iron/
 

 Notes 
manganese   
staining? 
 

8 Silty, 
bedded 
sandstone, 
interbedded 
red and 
gray 

28.5 cm Wavy 4-50 mm ? Flat Silt to fine 
sand at 
top, some 
medium 
sand at 
base  

Sub-
angular 
at base 
to sub-
rounded 
at top 

Moderately 
sorted at 
base to 
well sorted 
at top 

Yes, at top Some 
scouring at 
top 

7 Silty, 
bedded 
sandstone 

3.3 cm Wavy <1-2 mm 1 mm Wavy Silt to 
medium 
sand 

Angular  Moderate Yes, 
throughout 

 

6 Silty, 
bedded 
sandstone 

28 cm Flat at base, 
wavy at top 

5-40 mm 18 mm Wavy  Silt to fine 
sand 

Sub-
angular 

Moderate 
to poorly 
sorted 

Yes, inter-
bedded, <1-2 
mm lamina 

Sandstone 
partings, 
draped 
rippled and 
scoured 

5 Silty 
bedded 
sandstone 

57 cm Wavy at 
base, flat at 
top 

1-10 mm at 
base, 1-30 at 
top, 
thickening 
upward, 
alternating 
thin and 
thick 

5 mm at 
base to 12 
mm at top 

Flat, 
horizontal 

Silt, 
coarsening 
upward to 
fine sand 
and silt, 
with some 
clay 

Rounded 
at base 
to sub-
angular 
at top 

Very well 
sorted at 
base to 
moderately 
sorted at 
top 

Yes, inter-
bedded 

Thinner 
beds not 
finer 
grained 

4 Bedded 
sandstone 

Varies, 
12-14 cm 

Wavy Less than 1 
mm variation 

~1mm Wavy, 
some 
scouring 

Top and 
bottom - 
very fine 

Rounded Top and 
bottom - 
very well 
sorted. 
Middle - 
well sorted 

No, but top 
slightly more 
brownish 

Gray at 
bottom, 
brownish-
grey at top middle - 

fine to 
very fine 

3 Bedded 
sandstone 

Varies 
from 2.5 
cm to 4.5 
cm 

Flat at base, 
wavy at top 

Less than 1 
mm variation 

~1mm Wavy Very fine Rounded Very well 
sorted 

No Bluish-grey 
tint, some 
organics 
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H-435 
Unit Lithology Thickness

 
 Boundaries

 
 Lamina/bed 

thickness 
range 

Average 
lamina/ 
bed 
thickness 

Lamina/ Grain Sorting
bed 
shape 
 

Grain 
size 
 

shape 
 

 Iron/
 

 Notes 
manganese  
staining? 
 

2 Coal, 
blocky, 
thinly 
bedded 

45.5 cm Flat, 
horizontal 

1-3 mm 1.5 mm Flat, 
horizontal 

   No Variable 
coalification, 
different 
amounts of 
organic 
matter 

1 Friable 
siltstone 

69 cm Flat, some 
scouring at 
top 

2-5 mm, 
thicker at top 
8-9 mm 

? Flat, 
horizontal 
-  some 
dipping 
~5° 

Fine Angular Moderately No,  Micaceous, 
rhysocre-
tions, coal 
inclusions, 
oxydized 
around roots 
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Appendix B: Geochemistry of Outcrops 
HR-150 

Sample Unit 
Height Above 
Base, in cm 

Weight, 
in mg 

% Total 
Carbon 

% Total 
Sulfur Sample 

Weight, 
in mg 

% Organic 
Carbon 

% Insoluble 
Sulfur TOC/TS 

2/797 1 20 251.4 0.24 0.18 2a/759 251.8 0.24 0.14 1.36
4/793 2 44 250.9 0.12 0.01 4a/776 247.1 0.14 0.03 11.46
6/815 2 64 252.0 0.15 0.02 6a/772 252.7 0.15 0.03 7.57
8/773 3 79 252.7 0.20 0.17 8a/818 247.3 0.01 0.00 0.05

10/779 4 100 251.6 0.05 0.01 10a/806 248.6 0.06 0.03 4.39
12/811 4 120 251.2 0.05 0.01 12a/767 251.5 0.03 0.03 3.90
14/768 4 140 250.1 0.04 0.01 14a/765 253.0 0.05 0.03 4.40
16/785 5 160 252.4 0.04 0.03 16a/770 250.4 0.05 0.03 1.63
18/766 5 180 253.6 0.04 0.00 18a/792 249.2 0.04 0.01 8.58
20/789 6 201 250.7 0.03 0.00 20a/778 248.4 0.05 0.03 9.52
22/783 6 221 253.0 0.04 0.02 22a/782 253.9 0.06 0.03 2.59
24/791 6 241 250.0 0.04 0.00 24a/816 253.1 0.05 0.03 12.51
26/795 7 261 250.0 0.03 0.00 26a/822 252.2 0.04 0.03 8.60
28/821 8 281 249.9 0.03 0.05 28a/826 251.9 0.05 0.04 0.95
30/764 8 301 251.7 0.03 0.01 30a/794 250.7 0.03 0.02 4.09
32/819 9 322 250.0 0.10 0.01 32a/814 250.0 0.07 0.04 5.04
34/799 10 342 251.0 0.02 0.01 34a/784 250.2 0.05 0.04 6.86
36/787 10 362 252.0 0.03 0.00 36a/802 253.9 0.05 0.03 21.09
38/807 10 382 250.7 0.02 0.00 38a/763 252.6 0.07 0.01 49.00
40/803 10 402 253.7 0.04 0.00 40a/798 250.0 0.06 0.01 23.81
42/781 11 422 250.9 0.05 0.02 42a/823 249.5 0.05 0.04 3.23
43/813 12 428 250.3 0.07 0.00 43a/774 253.4 0.05 0.02 18.30
44/775 13 438 252.4 0.07 0.01 44a/788 251.1 0.09 0.01 15.18
46/805 13 458 251.8 0.39 0.01 46a/808 251.5 0.38 0.03 75.92
48/760 15 471 248.7 12.98 0.20 48a/796 250.4 12.74 0.21 64.33
49/771 16 477 253.1 0.25 0.02 49a/804 249.5 0.24 0.04 14.99
51/809 17 499 250.7 0.22 0.00 51a/825 252.1 0.22 0.02 64.20
53/777 18 518 250.2 0.20 0.02 53a/812 254.2 0.18 0.08 7.83



HR-150 
Height Above 
Base, in cm 

Weight, 
in mg 

% Total 
Carbon 

% Total 
Sulfur Sample Unit Sample 

Weight, 
in mg 

% Organic 
Carbon 

% Insoluble 
Sulfur TOC/TS 

55/817 18 538 252.8 0.11 0.01 55a/761 250.0 0.08 0.04 15.18
57/801 18 558 250.6 0.08 0.00 57a/786 249.7 0.11 0.03 36.81
59/762 18 578 250.3 0.10 0.01 59a/824 249.0 0.10 0.03 17.12
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H-435 

 Sample # 
Height Above 
Base, in cm 

Weight, 
in mg % Carbon % Sulfur Sample

Weight, in 
mg 

% Organic 
Carbon 

% 
Sulfur TOC/TS 

1u1-1-9/011 1 9 237.7 0.07 0.03 1a 251.6 0.10 0.02 3.18
1u1-2-21/020 2 21 235.4 0.09 0.03 2a 250.4 0.11 0.02 3.41
1u1-3-29/050 3 29 242.1 0.18 0.03 3a 250.8 0.23 0.03 8.97
1u1-4-39/013 4 39 255.7 0.21 0.01 4a 251.2 0.27 0.03 37.86
1u1-5-49/063 5 49 254.1 0.69 0.03 5a 249.3 0.72 0.04 21.23
1u1-6-59/028 6 59 249.6 2.35 0.02 6a 250.1 2.24 0.03 98.67
1u1-7-69/044 7 69 249.8 0.31 0.02 7a 249.7 0.33 0.03 16.78
1u1-8-79/016 8 79 253.6 0.60 0.04 8a 251.0 0.67 0.04 16.96
1u2-9-4/032 9 89 244.1 67.89 0.71 9a 250.5 51.44 0.44 72.11

1u2-10-14/040 10 99 221.5 65.59 0.68 10a 249.5 63.57 0.47 93.80
1u2-11-24/015 11 109 229.9 68.75 0.64 11a 249.3 64.10 0.52 100.30
1u2-12-34/088 12 119 235.6 69.73 0.55 12a 250.4 66.79 0.54 122.42

1u3-13-1/042 13 129 240.1 0.15 0.02 13a 250.1 0.28 0.04 12.37
1u4-14-5/055 14 139 240.5 0.21 0.04 14a 250.6 0.26 0.04 7.02
1u5-15-6/018 15 149 245.0 0.16 0.01 15a 249.1 0.19 0.01 12.67

1u5-16-16/034 16 159 249.8 0.16 0.11 16a 250.7 0.19 0.06 1.72
1u5-17-26/012 17 169 242.9 0.17 0.02 17a 250.3 0.20 0.05 11.48
1u5-18-36/059 18 179 236.5 0.15 0.01 18a 250.5 0.19 0.06 13.61
1u5-19-46/053 19 189 234.2 0.14 0.01 19a 249.1 0.20 0.05 20.52
1u5-20-56/083 20 199 242.3 0.16 0.02 20a 250.3 0.20 0.05 9.25

1u6-21-8/077 21 209 238.6 0.06 0.03 21a 250.0 0.11 0.06 4.10
1u6-22-18/072 22 219 229.6 0.10 0.01 22a 249.9 0.12 0.03 10.41
1u6-23-28/068 23 229 255.6 0.04 0.02 23a 249.7 0.09 0.04 5.05

1u7-24-2/065 24 236 232.6 0.14 0.01 24a 249.8 0.13 0.04 8.80
1u8-25-8/074 25 244 242.3 0.13 0.02 25a 250.1 0.17 0.04 9.91

1u8-26-18/014 26 254 243.5 0.25 0.01 26a 249.7 0.16 0.04 13.38
1u9-27-1/046 27 264 231.2 0.23 0.02 27a 250.0 0.24 0.08 11.08

1u10-28-6/070 28 274 234.1 0.08 0.01 28a 249.5 0.12 0.03 8.48
1u11-29-5/037 29 285 234.7 0.16 0.01 29a 250.2 0.15 0.05 12.09

1u11-30-15/003 30 295 247.0 0.05 0.03 30a 249.8 0.11 0.04 4.01
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H-435 

 Sample # 
Height Above 
Base, in cm 

Weight, 
in mg % Carbon % Sulfur 

Sample 
# 

Weight, in 
mg 

% Organic 
Carbon 

% 
Sulfur TOC/TS 

1u11-31-25/081 31 305 224.9 0.13 0.01 31a 250.4 0.17 0.06 13.36
1u11-32-55/061 32 315 226.1 0.09 0.01 32a 249.0 0.12 0.05 11.52

5.76
6.52

1u11-33-45/079 33 325 233.1 0.04 0.01 33a 251.1 0.06 0.05
1u11-34-55/025 34 335 233.7 0.03 0.01 34a 249.6 0.05 0.05
1u11-35-65/007 35 345 256.6 0.05 0.00 35a 249.2 0.11 0.06 23.13

3.89
7.94
4.50

1u11-36-71/005 36 351 239.3 0.16 0.02 36a 249.7 0.10 0.03
0.041u12-37-5/022 37 356 229.0 0.02 0.01 37a 250.0 0.07
0.040.09250.638a0.020.04223.23661u12-38-15/085 38 
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Appendix C: Collected Samples 
IU #19000 
Study number: S-05-1-3-4 
Fossil Name: Treptichnus isp. 
Location: HR-150 
Stratigraphic Horizon: Unit 4 
Collected on: June 8, 2005 
Collected by: Glenn Simonelli 
Identified by: Glenn Simonelli 
Number of Specimens: 1 
Notes: 
 
IU #19001 
Study number: S-05-1-1-5(a)-6 
Fossil Name: Treptichnus isp. 
Location: H-435 
Stratigraphic Horizon: Unit 5 
Collected on: August 17, 2005 
Collected by: Glenn Simonelli 
Identified by: Glenn Simonelli 
Number of Specimens: 1 
Notes: 
 
IU #19002 
Study number: EK-43B 
Fossil Name: Tetrapod track. 
Location: H-435 
Stratigraphic Horizon: Unit 5 
Collected on: ca. 1980 
Collected by: Erik Kvale 
Identified by: Erik Kvale 
Number of Specimens: 1 
Notes: This fossil has broken into 3 pieces since being photographed. 
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IU #19003 
Study number: S05-1-1-6-43 
Fossil Name: Plant material 
Location: H-435 
Stratigraphic Horizon: Unit 6 
Collected on: August 17, 2005 
Collected by: Glenn Simonelli 
Identified by: Glenn Simonelli 
Number of Specimens: 1 
Notes: Specimen currently kept in “Local Fossils” display case on 2nd floor of Indiana 
University Geology Building. 
 
IU #19004 
Study number: S-06-1-1-12 
Fossil Name: Lepidodendron mold 
Location: H-435 
Stratigraphic Horizon: Unit 12 
Collected on: January 27, 2006 
Collected by: Glenn Simonelli 
Identified by: Glenn Simonelli 
Number of Specimens: 1 
Notes:  
 
IU #19005 
Study number: S-05-1-1-11-38 
Fossil Name: Skolithos 
Location: H-435 
Stratigraphic Horizon: Unit 11 
Collected on: August 17, 2005 
Collected by: Glenn Simonelli 
Identified by: Glenn Simonelli 
Number of Specimens: 1 
Notes:  
 
IU #19006 
Study number: S-05-1-1-12-16 
Fossil Name: “Flanged” burrow 
Location: H-435 
Stratigraphic Horizon: Unit 12 
Collected on: August 17, 2005 
Collected by: Glenn Simonelli 
Identified by: Dr. Erle G. Kauffman 
Number of Specimens: 1 
Notes:  
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IU #19007 
Study number: S-06-1-3-7 
Fossil Name: Planolites isp. 
Location: HR-150 
Stratigraphic Horizon: Unit 7 
Collected on: January 27, 2006 
Collected by: Glenn Simonelli 
Identified by: Dr. Erle G. Kauffman 
Number of Specimens: 1 
Notes:  
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