Tools and workflows for building a collaborative, library-based data management service

Stacy Konkiel
Science Data Management Librarian
IU Libraries-Bloomington

Eric Snajdr
Science Librarian
University Library-IUPUI

Brianna Marshall
Science Data Curation Assistant
IU Libraries-Bloomington
Data Management as “Grand Challenge” & Curation
Library roles in data curation

• Historically, data preservation the domain of scientists & archives (Witt, 2008)
• In past 20 years, libraries have taken an increasingly active role in data management & curation as:
 - Educators (Johnston et al, 2012; Shorish, 2012; Carlson et al, 2011)
 - Connectors (Steinhart et al, 2008)
 - Curators & Preservationists (Ball, 2010; Kuipers & Koeven, 2009; Witt, 2008)
 - Data quality hubs (Giarlo, 2013)
IU Bloomington
Data Management Service

Coordinated by Science Data Management Librarian

- **Education & Gatekeeper**
 - Workshops, Documentation, DMP Consults
- **Evangelism**
 - OA Week, Workshops
- **Connector**
 - DMP Consults
- **Preservationist**
 - DMP Consults, IR Access

Not yet a **Curator**, likely never a **Data Quality Hub**
IU Bloomington’s approach to data curation

A “HIGH-TOUCH” DATA CURATION SERVICE PILOT
Indiana University-Bloomington

- Carnegie Research classified as “R1”
- Large, suburban, Midwestern school
- Grants 100+ different doctoral degrees
- 6 science-related branch libraries
- 500+ full-time faculty across...
 - 35+ institutes
 - 7 schools
 - 28 STM departments
Research Life Cycle

Libraries
- Open access & e-Publishing
- Data citation
- Altmetrics

Libraries
- Locate data

OVPR/OVCR
- Find partners
- Building research networks

OVPR/OVCR/ORA
- Conduct research
- Develop funding proposals
- Rights advisors

Libraries
- Data management planning & plans

Libraries/Legal Counsel

(Coates & Konkiel, 2013)
<table>
<thead>
<tr>
<th>Title</th>
<th>LEADII Vortex2 Archive Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Pale, Beth</td>
</tr>
<tr>
<td>Date</td>
<td>2011-02-25</td>
</tr>
<tr>
<td>Date(s) Covered</td>
<td>May 01, 2010 - June 15, 2010</td>
</tr>
<tr>
<td>Geographic/Spatial Information</td>
<td>Oklahoma</td>
</tr>
</tbody>
</table>

Methodology:
Executing 214 workflows, using 109,568 CPU hours and generating 215 GB of data and over 9,100 2D products, LEAD II produced short-term, highly accurate weather forecasts each morning and made the results instantly available to researchers in the field using mobile phones and a field viewer.

File Information:
Each 28GB zipped tarball contains at the top level a directory "out" which consists of a number of directories, each containing the results of a single forecast. The directory, out/forecast_201005010900000EDT_run001, for instance is for 9:00 May 1st, 2010 (Eastern Daylight Time). Within a forecast directory are approximately 9 data products (sometimes less than 9 data products because visualization generation for some variables failed). Each data product is in its own file, and described by a metadata file of the same name but ending in .metadata.xml.

Location:
http://hdl.handle.net/2022/12987

Type:
Dataset

Embargo release date:
2212-04-11

SDA link(s):
- http://purl.dlib.indiana.edu/iusw/data/2022/12987/LEADII-Vortex2-dataset.tar.gzaa
- http://purl.dlib.indiana.edu/iusw/data/2022/12987/LEADII-Vortex2-dataset.tar.gzab
- http://purl.dlib.indiana.edu/iusw/data/2022/12987/LEADII-Vortex2-dataset.tar.gzac
- http://purl.dlib.indiana.edu/iusw/data/2022/12987/LEADII-Vortex2-dataset.tar.gzad
- http://purl.dlib.indiana.edu/iusw/data/2022/12987/LEADII-Vortex2-dataset.tar.gzaf
Data Curation Service Pilot

Basic

- Set IR collections and admin rights for self-upload
- “Data enable” collections
- Consult with depositor on metadata, licensing
- BIG DATA: Instruct depositor on how to push data from personal to IUSW SDA account
- Serve as a liaison between depositor and library and UITS staff

Advanced

- *All of the Basic Services, plus...*
- Specialized workflows for ongoing fixed data management
- Upload files and create general and disciplinary metadata on behalf of user
- Create reports documenting their work, for researchers to include in funding agency DMP compliance documentation (as needed)
USE CASES
Spectrums of researchers’…

- Ability
- Interests
- Openness
- Support
A spectrum of ability

Experts

Savvy Researchers

Committed Beginners

Novices
A variety of interests

- Grant Compliance
- Legacy
- Open Data
- Discoverability
A spectrum of “openness”

- Berlin OA
- Open but not Discoverable
- Some Open, Not All
- Restricted Access
A spectrum of support

- Digital Curation Experts
- Embedded Librarian
- Post-Doc
- No support
Experts

- Informatics & Atmospheric Science
- NSF & NOAA Funded
- Team interested in Grant compliance, Open Data
- Disciplinary metadata
- Big Data, mixed formats
Savvy Researchers

- Evolutionary Biology
- NSF, some NIH Funded
- PI interested in Grant compliance, Discoverability, and Legacy
- 25+ years of data includes specimen information stored in relational database, photos, video, field notes
- Homebrewed metadata schema
- Embedded Librarian affiliated with team
Committed Beginners

- Condensed Matter Physics (Experimental)
- NSF & DOE Funded
- Commitment to general understandability
- Interested in Grant compliance only
- Data is small, in a mix of proprietary and open formats
- No metadata, little documentation
Novices

- Public Health (Emerita)
- Interested in **Legacy**, **Discoverability**, **Open Data**
- Little external funding
- Mix of obsolete, proprietary formats and open formats; 50% analog & 50% digital
- No metadata, little documentation
DATA CURATION TECHNOLOGIES, WORKFLOWS & PARTNERSHIPS
General Workflow

- Intake Interview
- Collect Files & Documentation
- Metadata
- Reformat Files
- Create Disciplinary Metadata XML File
- Embed Licensing Info & Other Metadata
- BIG DATA: Compress & upload to SDA
- Migrate dataset metadata to DC XML (RDF) file
- Upload to DSpace

Legend: Pop-out Not yet deployed
General Technologies

Intake Interview
- Email Data Curation Profile Form (Microsoft Word)
- Live interview (Microsoft Word)

Collect Files & Documentation

Metadata
- Notepad (Readme)
- Zip/Archive Utility (Readme)
- JIRA Ticketing System & Wiki
- Excel (Multiple files)
- DSpace interface (single file)

Create Disciplinary Metadata XML File
- Oxygen XML Editor

Embed Licensing Info & Other Metadata
- Photoshop & Acrobat

Reformat Files
- Adobe Acrobat, Microsoft Word/Excel, Oxygen XML Editor, and proprietary formats

BIG DATA: Compress & upload to SDA
- Zip/Archive Utility
- WinSCP/FTP Utility

Migrate dataset metadata to DC XML (RDF) file
- Oxygen XML Editor
- Excel (multiple files)

Upload to DSpace
- “Data enable” collection at command line
- Excel (multiple files)
General Technologies

Collect Files & Documentation

- Digitization
 - Flatbed scanner, high-speed photocopier/scanner, Adobe Acrobat, Box
- Reorganization
 - Box, Dropbox, network servers
- Description
 - Shared Microsoft Excel spreadsheet
- Weeding
 - Box, Dropbox
- Checksums
 - HSI on SDA
Key Partnerships & Roles

- Researcher/Research Team/PI
- Technology Experts
- Subject Expert
- Licensing
- Metadata
- Hourly Worker(s)
View from a Subject Expert

For the researcher, data management requires

• Time
• Basic understanding of the processes involved
• Expertise (technology and other)

A Subject Expert can help to ease burden on Researcher and Data Librarian
View from a Hourly Student Worker

- Access to data curation readings and resources before jumping into project helped
- “Sink or swim” experience with case study
- Tools like IU Box and JIRA greatly improved collaboration and communication
- Face-to-face meetings are important, too!
Limitations

- Version control
- Permissions for ease of collaboration
- File size limitations
- Differences in awareness/knowledge of tools
- Faculty resistance to new technology
- Newer technologies (ELNs, sci. workflow software) not yet integrated into this model
TAKEAWAYS FOR YOUR INSTITUTION
Staffing & Expertise

• Data librarians nice but not required
• Researcher buy-in absolutely required
• Leveraged expertise wherever possible
• (Good) Hourly student workers key
University Cyberinfrastructure

• On-campus resources for data storage, data preservation, and data access necessary University-wide
 Campus-wide
 Departmentally-supported
• Third-party options (non-sensitive data)
 Cloud storage & backup
 Repositories (subject & ‘non-denominational’)
Scope out the data curation needs & resources

- **Data Curation Profiles** a great resource
- Must have faculty investment in:
 - Keeping workflow consistent
 - Applying metadata standards & keeping good documentation
 - Using naming conventions
- What is the realistic level of investment your campus library and IT unit can offer?
Thank you!

Stacy: skonkiel@indiana.edu
Eric: esnajdr@iupui.edu
Brianna: bhmarsha@indiana.edu

Download this presentation:
[slideshare url] // [iuscholarworks handle]

Most references and photo sources embedded as links