Establishing an Information Architecture Integration with an Open Systems Environment

University Computing Services Indiana University Bloomington, Indiana

Gerry Bernbom
Assistant Director, Data Administration and Access
e-mail: bernbom@ucs.indiana.edu

Dennis Cromwell Manager, Information Technology and Standards e-mail: dcromwel@ucs.indiana.edu

> CAUSE 92: Dallas, Texas December 2, 1992

Establishing an Information Architecture

Integration with an Open Systems
Environment

Overview

- Context
- Data Architecture
- · An Approach to Data Architecture
- · Open Systems
- A Technology Map: Indiana University
- · An Approach to Open Systems
- Next Critical Events

Organizational context

- Eight-campus university
- Merged academic/administrative computing
- · Computing Services mission

Context: Strategic Initiatives

- · High-speed data network
- · Workstation-centered computing
- Relational database management systems
- Access to data

Macro-level analysis of data

- · General nature of data
- Intended uses of data
- · Standards for information synthesis
- Recommended technologies for data deployment

Industry reference points

- · VITAL Apple Computer, Inc.
- · Information Warehouse IBM Corp.
- EDA/SQL Information Builders, Inc.
- "Data Warehouse" Bill Inmon

IU's Data Architecture

- Separate operational and information detail
- Refine information detail
- · Develop standard collections
- · Integrate with local data

Step 1: Separate Operational and Information Detail

- · Match performance to use
- Match structure to performance
- Provide stable data values

Step 2: Refine Information Detail

- University E-R data model
- Establish authoritative sources
- · Migrate to relational

Step 3: Develop Standard Collections

- Data views
- Summary, aggregate databases
- Standard definitions
- Repetitive summarization, aggregation
- "Snapshot" points-in-time

Step 4: Integrate with Local Data

- Front-end: source for enterprise systems
- Back-end: local definitions, selections...

Technology Map to "Open Systems"

- · Standards based
- · Workstation oriented
- Supports a multi-vendor environment
- Available technologies
- Sustainable technologies

Examples of Open System Choices

- TCP/IP
- DB2
- Novell

Open Systems and Indiana University

- Strategy for the early 1990s
- Three other open systems strategies

"Technology Coexistence" — Strategy for the early 1990s

- · Cornerstone: one network, many services
- · User view: single workstation, many functions
- Data migration to SQL RDBMS
- Gateway between proprietary and "open" server environments
- · Mix of proprietary and "open" solutions

Three other "open systems" strategies

- "Freeze and rebuild"
- · "Clearcut and reseed"
- "Wait and see"

Technologies and Architecture

- · Select a technology suite
- Map technology to architecture
- Specify technology for each application

Criteria: Select and map technology

- · Open Systems
 - Standards-based
 - Workstation-oriented
 - Multi-vendor
 - Available
 - Sustainable
- Resources
 - · Performance/cost
 - · Established expertise
 - Integration
 - · User funtionality
 - User preference

Next Critical Events

- · Architected Data Environment
- Open Systems Environment

Critical events: data architecture

- Migrate data to RDBMS
- Methodology for "standard collections"
- · Decision-rules used to select technologies
- · Move access to the desktop
- Move preferred access to data collections

Critical events: open systems

- Novell/SQL database
- Gateways to/from MVS
- Security in client/server environment
- Integration of DCE functions