Establishing an Information Architecture Integration with an Open Systems Environment

University Computing Services
Indiana University
Bloomington, Indiana

Gerry Bernbom
Assistant Director, Data Administration and Access
e-mail: bernbom@ucs.indiana.edu

Dennis Cromwell
Manager, Information Technology and Standards
e-mail: dcromwel@ucs.indiana.edu

CAUSE 92: Dallas, Texas
December 2, 1992
Establishing an Information Architecture
Integration with an Open Systems Environment

Overview
- Context
- Data Architecture
- An Approach to Data Architecture
- Open Systems
- A Technology Map: Indiana University
- An Approach to Open Systems
- Next Critical Events

Organizational context
- Eight-campus university
- Merged academic/administrative computing
- Computing Services mission

Context: Strategic Initiatives
- High-speed data network
- Workstation-centered computing
- Relational database management systems
- Access to data
Macro-level analysis of data

- General nature of data
- Intended uses of data
- Standards for information synthesis
- Recommended technologies for data deployment

Industry reference points

- VITAL - Apple Computer, Inc.
- Information Warehouse - IBM Corp.
- EDA/SQL - Information Builders, Inc.
- "Data Warehouse" - Bill Inmon

Data architecture

- Standard Collections
- Local Collections
- Information Detail
- Operational (Enterprise)
- Operational (Local)

Data architecture

- Retail
 - Standard Collection
 - Local Collection
 - Information Detail
 - Operational (Enterprise)
 - Operational (Local)

- Wholesale

- Manufacturing
IU's Data Architecture

- Separate operational and information detail
- Refine information detail
- Develop standard collections
- Integrate with local data

Step 1: Separate Operational and Information Detail

- Match performance to use
- Match structure to performance
- Provide stable data values

Step 2: Refine Information Detail

- University E-R data model
- Establish authoritative sources
- Migrate to relational

Step 3: Develop Standard Collections

- Data views
- Summary, aggregate databases
- Standard definitions
- Repetitive summarization, aggregation
- "Snapshot" points-in-time
Step 4: Integrate with Local Data

- Front-end: source for enterprise systems
- Back-end: local definitions, selections...

Technology Map to "Open Systems"

- Standards based
- Workstation oriented
- Supports a multi-vendor environment
- Available technologies
- Sustainable technologies

Examples of Open System Choices

- TCP/IP
- DB2
- Novell

Open Systems and Indiana University

- Strategy for the early 1990s
- Three other open systems strategies
"Technology Coexistence" — Strategy for the early 1990s
- Cornerstone: one network, many services
- User view: single workstation, many functions
- Data migration to SQL RDBMS
- Gateway between proprietary and "open" server environments
- Mix of proprietary and "open" solutions

Three other "open systems" strategies
- "Freeze and rebuild"
- "Clearcut and reseed"
- "Wait and see"

Technology Map of Indiana University

Technology map — workstation
Technologies and Architecture

- Select a technology suite
- Map technology to architecture
- Specify technology for each application
Criteria: Select and map technology

- Open Systems
 - Standards-based
 - Workstation-oriented
 - Multi-vendor
 - Available
 - Sustainable
- Resources
 - Performance/cost
 - Established expertise
 - Integration
 - User functionality
 - User preference

Data Architecture/Technology Map

Next Critical Events

- Architected Data Environment
- Open Systems Environment

Critical events: data architecture

- Migrate data to RDBMS
- Methodology for "standard collections"
- Decision-rules used to select technologies
- Move access to the desktop
- Move preferred access to data collections
Critical events: open systems

- Novell/SQL database
- Gateways to/from MVS
- Security in client/server environment
- Integration of DCE functions