IUB Libraries Video Streaming Service: A Technical Overview

Jon Dunn
Brian Wheeler
Mike Durbin

Digital Library Brown Bag Series – April 1, 2009
Presentation Outline

- Background and goals
- Demonstration
- Video ingestion and processing
- Video management and delivery
- Future directions
Project Background

- 2004: Video e-reserves pilot involving 9 class sections
 - Supported by DLP and Media/Reserves
- 2005-2008: Further pilot testing and development
 - Supported by LIT and Media/Reserves
- Fall 2008: Production “soft launch” of Video Streaming Service
 - DLP and Media/Reserves
Project Goals

- Ability for Media/Reserves to easily deliver access to streaming video
- Support both locally-digitized content and digital video files acquired from vendors
 - Must be able to accept a wide variety of formats
- Support both licensed content and unlicensed e-reserves content
 - Requires access control
Project Goals (continued)

- Easy to use for both collection manager and faculty/student users
- Integrated with existing discovery platforms
 - IUCAT
 - E-Reserves
 - Oncourse
Project Goals (continued)

- Supportable and sustainable
- Leverage existing technology platforms
 - UITS streaming servers
 - DLP web application servers and repository system (Fedora)

- Aggressive timeline required deferring some goals:
 - Oncourse and Fedora integration
Demonstration
Technical Overview: Video Processing

- Master files not suitable for delivery
 - Large files, high quality and resolution
 - Bitrates too high for delivery (>5Mb/s)
 - File format not supported for streaming

- Deliverable files
 - Quality reduced and resolution fixed at 640x480
 - Bitrates set to 1Mb/s and 400Kb/s
 - MPEG-4 format using the h.264 codec
Video Processing Workflow

- Master Video (dropbox)
- ImageProc
- Master Video (HPSS Spool)
- Config file
- UITS Streaming Server
 - Med-Q Video
 - High-Q Video
Processing Masters with ImageProc

- ImageProc tool features:
 - Handles images and video
 - Dropbox-based processing
 - Performs quality control and processing
 - Transaction-based: only complete objects are committed
 - Multi-threaded: multiple objects processed simultaneously
 - C-like language for configuration and processing
ImageProc Configuration

Video conversion configuration file:

collection {
 info {
 NAME := "VSS - KCR Collection";
 DROPBOX := "/digitize/dropbox/vss";
 PATTERN := "*.avi";
 SCAN := "find";
 DERIVATIVES := "/N/movies01/dig-lib/dl/media";
 }
 qc {
 id_format="avi";
 id_vcodec="mpeg4";
 id_acodec="pcm_s16le";
 id_samplerate=44100;
 }
 process {
 genvideo(filename:=basename+-med.mp4, format=:"h264", quality=:"medium");
 genvideo(filename:=basename+-high.mp4, format=:"h264", quality=:"high");
 movemaster("/digitize/hpss/vss");
 }
}
Dropbox processing

- Configuration file specifies
 - The name of the collection
 - The dropbox directory
 - The filename pattern to use to match files
 - How to find files: flat directory or recursively
 - Where derivatives are sent
 - Where to send status emails
 - A URL to use for status messages
Quality Control

- File attributes are tested:
 - Age
 - Permissions
 - Ownership
- Content attributes are tested:

```qc{
  id_format="avi";
  id_vcodec="mpeg4";
  id_colorspace="yuv420p";
  id_acodec="pcm_s16le";
  id_samplerate=44100;
}
```
Quality Control (continued)

- Multiple values can be selected using any():
 - `any(id_samplerate, 44100, 48000)`;

- Standard tools used for media identification:
 - Videos: `ffmpeg`
 - Images: `ImageMagick`, `tiffinfo`

- Unique filenames can be tested:
 - `unique("basename", BASENAME);`
Derivative Creation

- Configuration file defines derivative creation
- Functions for:
 - Image conversion
 - Video conversion
 - File copy and rename
- Sample video processing configuration:

```plaintext
process {
    genvideo(filename:=BASENAME+"-med.mp4", format:="h264", quality:="medium");
    genvideo(filename:=BASENAME+"-high.mp4", format:="h264", quality:="high");
    movemaster("/digitize/hpss/vss");
}
```
Derivative Creation (continued)

- Newly created files end with .new extension
- genvideo() function builds ffmpeg command line:
 - genvideo(filename:=BASENAME+"-med.mp4", format:="h264", quality:="medium");
 - ffmpeg -y -i 0057.avi -vcodec libx264 -f mp4 -acodec libfaac -ac 2 -ab 32000 -ar 44100 -b 368000 -flags +loop -cmp +chroma -b_strategy 1 -coder 1 -me_range 16 -g 250 -keyint_min 25 -sc_threshold 40 -i_qfactor 0.71 -bt 368000 -qcomp 0.6 -qmin 10 -qmax 51 -qdiff 4 -s 640x480 -r 29.997 -deinterlace -rc_eq blurCplx^(1-qcomp) -bf 16 -me umh -partitions +parti8x8+parti4x4+partp8x8+partp4x4+partb8x8 -subq 7 -trellis 1 -refs 6 -directpred 3 -bidir_refine 1 0057-med.mp4.new
Transaction Processing

- Object processing is all or nothing
 - Any failure will abort processing
 - New derivatives created will be erased
 - Existing files remain untouched
 - On successful processing of all parts
 - Derivatives copied to UITS server for streaming
 - Master files copied to HPSS spool for storage
Final Processing

- Processing results are sent to
 - The management application
 - Administrators via email

- Cleanup
 - Persistent data is written to disk
 - Temporary files are removed

- ImageProc goes back to sleep
Technical Overview: Management Application

DIGITAL LIBRARY PROGRAM
INDIANA UNIVERSITY
Libraries/University Information Technology Services
Technical Overview: Data Model

- **Video**
 - Represents a single captured video or video segment
 - Contains only enough metadata to identify and locate the streaming video files

- **Item**
 - Represents a logical item which may contain a sequence of one or more videos
 - Contains descriptive metadata to describe the videos, comparable to (and automatically populated from) the library catalog entry
 - Contains administrative metadata for those videos to determine access conditions.
Technical Overview: Video Metadata Workflow

- ID Generation and file naming
 - Done by the Drop Box application (automatic)
- Video to item assignment
 - Done using the management application
- Item descriptive metadata entry
 - Done using the management application
- Item administrative metadata entry
 - Done using the management application
- Catalog update (for Licensed content)
Technical Overview: Playback application

- Access Points
 - Persistent URL
 - In IUCAT records
 - In the E-Reserves Systems

http://purl.dlib.indiana.edu/iudl/general/video/VAA8259
Technical Overview: Video Playback

- UITS Flash Streaming Server
- Playback Web application
 - Java Struts web page
 - JW FLV Media Player
 - CC non-commercial license
 - CAS authentication
 - Metadata-based authorization
Next Steps

- Extend to other libraries/departments
 - e.g. Cook Music Library
 - Multiple management views, branding
- Support access control for e-reserves based on actual course enrollment data
 - Eliminate requirement to link from E-Reserves
- Support access control for videos and management system using ADS groups
- Support access via IUScholarWorks Repository
Possible Future Directions

- Integrate Fedora repository as content management system
- Integrate with video preservation workflows
- Video in Variations
Questions?