Software Development in the Digital Library Program

Digital Library Brown Bag
Tamara Cameron
David Jiao
Oct. 22, 2004
Outline

- Custom Development in the DLP
- Overview of Digital Library Program
- Software Development Life Cycle Model
- Case Study – Cushman Project
- Observations
- Recommendations
Reasons for Custom Development

- Field is relatively young. Early projects were experiments to determine the role, purpose and scope of digital library initiatives within parent organizations.

- Limitations of commercial software in managing large collections of heterogeneous electronic resources
Digital Library Architecture

- Content Digitization
- Metadata Extraction
- Multimedia Content
- Metadata
- Repository
- Search/Browse/Display
- Application Specific Functionalities
- Content Delivery
- User/Client
- Network
Staffing of Projects

Technical staff are assigned to projects in one of three ways:

- Single, Large Projects (Variations2, EVIADA)
- Single Small Projects (FLI, Newton)
- Multiple Projects (Cushman, Letopis, DLXS)
Future Directions

DLP are aware and actively working to improve the infrastructure

- Efforts
 - Application Architecture: Java/Struts/Tomcat
 - Source Code Management: CVS, ANT
 - Testing and Maintenance: Bugzilla

- Analysis of the Development Life Cycles of different projects
Software Development Life Cycle Model (SDLCM)

- SD Activities:
 - Coding/Debugging, Testing, Requirements, Maintenance, Deployment/Installation …

- A SDLCM is a framework, selected by an organization, on which to map these activities.
Benefits of Using SDLCM

- Increasing quality
 - Achieve conformance to requirements
 - reduce the number of software defects
 - mitigate risks associated with the software
- Reducing project cost and schedule
 - provides a framework for systematic, incremental software process improvements
 - reduces the cost and schedule of the testing, installation, and maintenance phases
- Improving manageability
 - enhanced accuracy of project planning
 - detailed means of tracking projects
 - early measures of software quality
 - improved repeatability of success stories
Common SDLCM

- BuildAndFix
- Waterfall
- Modified Waterfall
 - Prototyping Waterfall
 - Milestone Waterfall
- Spiral
BuildAndFix

- Vague planning and analysis, if any
- The working program is the only work product
- Appropriate for small programs written by one person
- Understandability and maintainability decrease rapidly with increasing program size
Waterfall

- Sequential Steps (Phases)
- Feedback Between Phases
- Documentation Driven
- Efficient when requirements are fully understood

- Forward progress through the phases flows down, like cascading water.
- Upward arrows defy gravity, require extra energy.
Waterfall (cont.)

- Advantages
 - Clearly defined phases, good documentation
 - Easier Maintenance

- Disadvantages
 - Lack of customer involvement
 - Sequential and complete execution of phases often not desirable
 - Product available very late in process (high risk of wrong product)
Modified Waterfall

- Prototyping Waterfall
 - Build an example system to help elicit requirements
 - Perfection of Prototype can take too much time
- Milestone Waterfall
 - Milestone builds, dedicated to addition of key functionality
 - Excellent for proving concepts when attempting a totally new technology
 - Reduce risks by incorporate highest risk functionality into the earliest builds
Spiral

- Combination of prototyping with iterative development
- Seek feedback from customer
- Appropriate for big projects
- Not appropriate for database driven projects
Case Study – Cushman Project

- Funded with an Institute of Museum & Library Services (IMLS) grant
- ~ 14,500 color slides, 1938-1969
- Site launched 10/2003 and 03/2004
- Functionalities
 - Search, Browse and Display
 - Controlled Vocabulary, Thesaurus
- http://webapp1.dlib.indiana.edu/cushman/
Success of Cushman Project

- Completeness of functionality
- High quality, few bugs
- Close to schedule
- Possible reusable code
- Experiences earned are precious
Cushman Development Life Cycle

Grant Proposal

Metadata

Digitization

Metadata

Prototyping & Usability Testing

Requirements

Spring 2000

Fall 2001

Spring 2002

Spring 2003
Cushman Development Life Cycle

Phase I

April 2003

Design

- Database
- Interface
- Middleware

Implementation

- Database
- Interface
- Middleware

Testing

- Content Digitalization
- Metadata Extraction
- Multimedia Content
- Repository

Release

User/Client

Search / Browse / Display

Application Specific Functionalities

Content Delivery

November 2003

October 2003

August 2003
Cushman Development Life Cycle

Prototype & Usability Test

Requirements

Design

Interface

Middleware

Implementation

Interface

Middleware

Testing

Release

October 2003

November 2003

Late Nov. 2003

February 2004

March 2004

Content Digitalization

Metadata Extraction

Metadata

Multimedia Content

Repository

Search/Browse/Display

Application Specific Functionalities

Content Delivery

User/Client

Phase II
Cushman Development Life Cycle

Maintenance
Summarization of Cushman Development Life Cycle

- Factors contributing to Success
 - Effective Resource Management
 - Commitment to Documentation
 - Clear phases of Development
 - Staged Release
 - Choice of Technology

- Lessons Learned
 - Lack of documentation templates
 - Implementation Documentation
 - Time management
Observations

- Time and Resource Constraints
 - Not unique to DLP
- Models can be identified but are not planned
 - Growing Pains
- Pros and Cons for programmers
 - Pros: Organic Process, Creative, Lots of freedom
 - Cons: Organic Process, Creative, Too much freedom
Recommendations

- Continue to work to formalize process
 - Prototyping-Milestone-Waterfall recommended

- Look to Cushman for ideas
 - developing project plans
 - provide structure for current projects
 - identify areas of common functionalities
Q & A
References

 Sams © 2000