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Preface

This document is the culmination of my graduate education in physics. It is a sum-

mary of the motivation, methods, and results of the analysis I conducted at experi-

ments using the world’s two largest particle accelerators. Out of necessity for efficient

communication of the methods and results there will be judicious use of moderately

advanced analytical and computational mathematics. However, for the casual reader

(my family and friends), as well as for the introductory graduate student (whose

daunting learning curve I remember well), I endeavor at every point to include a clear

written description of each step. The introduction is intended to be useful for the

graduate student beginning his or her career, while still remaining accessible to the

non-scientist with an interest in particle physics and the research discussed herein.

Why study physics?

There seems to be a general perception that to study physics is to tackle one of

the most difficult disciplines in academia. For this reason, many prospective young

students seem to find themselves averted from the idea. It is true that the material

is difficult, in large part because of the daunting mathematical skills required to

arrive at formal results. Nonetheless, it is a worthwhile subject to pursue. Even an
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introduction to the fundamental concepts of physics bestows unique and valuable new

perspectives. As Carl Sagan put it, “The cosmos is rich beyond measure – in elegant

facts, in exquisite interrelationships, in the subtle machinery of awe.”1 As one delves

further into the intricacies of physics, more of this complex beauty is revealed.

When one understands how physical phenomena operate at the general level, they

become suddenly obvious in a variety of often beautiful examples. The iridescent

wings of a butterfly or the colors inside a sea shell are striking examples of how

diffraction and interference contribute to the beauty in nature. Through application

of the skills learned in an education in physics, such fundamental concepts can be

harnessed in novel ways to make precision measurements which provide deep insights

into the workings of nature. Each such basic physical principal can lead to discoveries

across a wide variety of scales, ranging from the detection of planetary systems being

born around other stars2 to observations of how matter behaves at the tiniest of sizes.3

To go beyond the concepts and rigorously pursue the depth that physics has to

offer, a physicist requires a strong grasp of mathematics and an ability to translate

abstract concepts into mathematical formulas. Such translation is vital for rapid and

efficient communication and manipulation of ideas. The successful student of physics

acquires an entirely new language of abstract representations. Despite the difficulties

of translating phenomena between the observable and the mathematically abstract,

any physicist will undoubtedly extol the virtues of the skills developed along this path

of education.

A trained physicist has built a powerful set of skills and perspectives for solv-

1C. Sagan, Cosmos (Random House, New York, 1980).
2J.A. Eisner et al., Astrophys. J. 718, 774 (2010).
3K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
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ing problems. Multiple variables, both observable and inferred, influence even the

simplest of systems and must be considered. Complicating the matter, the variables

in physical systems regularly influence each other in non-trivial ways. The resulting

mathematical formulations are often impossible to solve exactly, requiring an expert

ability to craft computer programs to find an approximate solution. The proba-

bilistic (quantum) nature of the subatomic world and the statistical interpretation of

experimental measurements together add yet another layer of complexity. Specialized

mathematical techniques to account for unavoidable uncertainties in the results must

be applied. Over the course of his or her career, the physicist sharpens the skills to

recognize and tackle each of these facets in whatever form they appear.

It is the ability to apply these rigorous and logical techniques to novel problems

that is the strongest advantage of an education in physics. The frontiers of science

have moved to the study of complex interacting systems which blur the lines between

traditionally separate fields and require novel new approaches and insights. The rise of

biophysics as a popular discipline buzzing with activity illustrates just how powerful

insights from physics can be when applied to biological systems. At the crossover

between atomic physics, materials science, and chemistry, physicists are pioneering

the blossoming fields of nanotechnologies. Those in possession of the skills developed

through an advanced education in physics are integral to emerging fields of promising

new interdisciplinary research.

There is also much to be gained by pushing the boundaries of knowledge and

studying the advanced frontiers of pure physics. Researchers continue to probe deeper

into big questions about the nature of the universe. Particle physicists are designing

ever grander experiments in an effort to discover the fundamental constituents of

x



matter. Cutting-edge accelerator facilities are producing energy densities consistent

with the earliest moments after the big bang, seeking to find the origin of mass,

extra dimensions of space, or new fundamental forces. This is an exciting time to be

involved in physics research.
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Denver W. Whittington

SEARCHES FOR LORENTZ VIOLATION IN TOP-QUARK

PRODUCTION AND DECAY AT HADRON COLLIDERS

We present a first-of-its-kind confirmation that the most massive known elementary

particle obeys the special theory of relativity. Lorentz symmetry is a fundamen-

tal aspect of special relativity which posits that the laws of physics are invariant

regardless of the orientation and velocity of the reference frame in which they are

measured. Because this symmetry is a fundamental tenet of physics, it is important

to test its validity in all processes. We quantify violation of this symmetry using the

Standard-Model Extension framework, which predicts the effects that Lorentz vio-

lation would have on elementary particles and their interactions. The top quark is

the most massive known elementary particle and has remained inaccessible to tests

of Lorentz invariance until now. This model predicts a dependence of the production

cross section for top and antitop quark pairs on sidereal time as the orientation of

the experiment in which these events are produced changes with the rotation of the

Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider,

we search for violation of Lorentz invariance in events involving the production of a tt̄

pair. Within the experimental precision, we find no evidence for such a violation and

set upper limits on parameters describing its possible strength within the Standard

xii



Model Extension. We also investigate the prospects for extending this analysis using

the ATLAS detector at the Large Hadron Collider which, because of the higher rate

of tt̄ events at that experiment, has the potential to improve the limits presented

here.
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Chapter 1

Introduction

Physicists forge a deep connection with the world around us by seeking to understand

the mechanisms by which it operates. Through centuries of observation and careful

analysis, a broad-reaching and profoundly thorough quantitative description of these

mechanisms has been developed. Disparate phenomena are connected by common

underlying principles and symmetries. The analysis presented here seeks to test one

of these fundamental tenets. Specifically, it is a search for a “preferred” direction in

spacetime – something which would contradict the findings of physicists from Galileo

to Einstein – but a direction which only applies to the top quark, the heaviest of

the fundamental constituents of matter. The mathematical laws describing physical

processes should be insensitive to the orientation and velocity of an experiment, and

a violation of this principle is referred to as “Lorentz violation” (LV). Many tests of

this principle have been carried out, but none so far have probed the regime of the

top quark. We present a detailed discussion of the analysis published in Reference

[1], the results of the first experimental investigation of Lorentz violation in the top
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1. Introduction

quark sector.

This chapter will provide a general introduction to particle physics, to familiarize

the reader with the concepts relevant to the analysis and the apparatuses used. The

next section provides an overview of the Standard Model of Particle Physics, the

description of the fundamental subatomic constituents of the known universe. Central

to this analysis is the top quark, the heaviest of the constituents of matter, warranting

a more in-depth discussion of its properties and the history of its discovery. Following

this is a brief overview of modern experimental particle physics and the fantastic

equipment needed for such research. The final section of the introduction discusses

another fundamental concept of physics – the role of symmetry, particularly Lorentz

symmetry.

The second chapter provides a more in-depth description the mathematics of the

Standard Model and the mechanisms of Lorentz violation through the Standard-

Model Extension [2], the current limits and constraints on violation of this symmetry,

and the facets accessible through a study of Lorentz violation in the top-quark sector.

The third chapter discusses the unique signatures of Lorentz violation in the behavior

of top quarks produced at particle colliders and details the theoretical derivation of

our expectation for these signatures.

Chapters four through six describe the DØ detector at Fermilab’s Tevatron facility,

along with the analysis and results of our search for Lorentz violation there. Chapter

seven describes the expected sensitivity of this search at the ATLAS detector at

CERN’s Large Hadron Collider. Finally, chapter eight presents a discussion of the

results and conclusions of this dissertation.

2



1.1 Overview of the Standard Model 1. Introduction

1.1 Overview of the Standard Model

The mathematical framework which describes the fundamental constituents of nature

and their interactions is called the Standard Model (SM). This theory does a remark-

able job predicting the observed properties of the interacting matter and energy in

the universe. To study and develop the Standard Model is to investigate the way the

universe operates at the most fundamental level.

The top quark is the heaviest of the known fundamental particles. It is the most

massive of the six quarks, the particles which bind together into the bulk of what

we observe as matter. The top quark provides some unique opportunities to study

aspects of the Standard Model and possible physics beyond it. Its large mass may

mean that it plays an important role in the interactions between particles and the

mechanism by which particles acquire mass.

1.1.1 The Standard Model

The quest for a deeper understanding of how the world around us is constructed has

pushed the definition of what is truly fundamental to smaller and smaller scales. By

the end of the 20th century results from investigations in a variety of fields of physics,

both theoretical and experimental, had coalesced into the model of the fundamen-

tal constituents of matter and their interactions called the Standard Model. With

this model we can peer deeper into the nature of the universe, beyond the levels

of molecules, atoms, and atomic nuclei, into the interiors of protons and neutrons

(Fig. 1.1).

In the regime of the subatomic, physical systems paradoxically exhibit properties
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Figure 1.1: Zooming in on the structure of matter. ( c© 1992 CERN)

of both particles (such as localization) and waves (including interference and diffrac-

tion). As a curious result, measurable quantities do not exist in a continuum but

occur with discrete, “quantized” values. Thus, quantum mechanics plays a dominant

role in describing the behavior of the fundamental building blocks of the universe.

The Standard Model provides a rigorous mathematical framework within which these

fundamental particles can be understood quantitatively. As we discuss below, all

elements of the Standard Model – both the constituents which comprise matter and

the forces mediating the interactions between them – are quantum objects, exhibiting

this wave-particle duality. For simplicity, we refer to these quantum objects by the

term “particle.”

After decades of experimental discoveries and theoretical developments, what once
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appeared to be an entire “particle zoo” of dozens of particles has been distilled into

a collection of a handful of truly fundamental particle species. These are divided

into two major categories, based on an intrinsic quantum mechanical property called

“spin.” This is a property of the species of a particle, and is related not only to

the classical concept of angular momentum but also to the statistical properties of

each species. This quantum number divides the particles of the Standard Model into

bosons (particles with integer spin – 0 or 1 units of the reduced Planck constant

~) and fermions (particles with spin 1
2
~). As a result of their collective statistical

properties, the bosons act as mediators of the interactions between particles, and the

fermions constitute matter.

The fermions of the Standard Model are further divided into two categories,

dubbed “quarks” and “leptons.” The familiar electron is an example of a lepton.

This particle is found at everyday energies bound to atoms and molecules and is

responsible for the chemical properties of substances. Within the Standard Model

there are three charged flavors of lepton – the electron and its more massive cousins

the muon and tau lepton. There also exist three related flavors of neutral leptons,

the ghostly neutrinos.

The other category of fermions in the Standard Model are the quarks. These

fundamental particles come in six flavors: down, up, strange, charm, bottom, and

top. The first two, the down quark and the up quark, have the lowest mass and

therefore are the most stable and common in the universe. The protons and neutrons

at the nucleus of every atom are composed of a combination of three of these quarks

(u+u+d for the proton and u+d+d for the neutron). The more massive quarks play

roles in more exotic particles and interactions which occur at higher energies.

5



1.1 Overview of the Standard Model 1. Introduction

The fermions are grouped into three “generations.” The lightest and most common

quarks and leptons – the down and up quarks, the electron, and the electron neutrino

– constitute the first generation. The strange quark, charm quark, muon, and muon

neutrino share the same properties as their respective first-generation counterparts,

but are more massive. They constitute the second generation. Similarly, the third

generation fermions are the bottom and top quarks, the tau lepton, and the tau

neutrino.

While the fermions constitute “matter,” the bosons mediate the forces between

them. By far the most familiar and intuitive of the constituents of the Standard

Model, the photon transmits electromagnetic interactions between electrically charged

particles. The electromagnetic spectrum, including radio and visible light, represents

photons of varying energies. This interaction of electrically charged subatomic parti-

cles through the electromagnetic force is described through a combination of quantum

mechanics and special relativity, a component of the Standard Model called quantum

electrodynamics (QED).

Beyond electromagnetism, there are two other forces which play a role at the

energy scales described by the Standard Model. The strong nuclear force binds quarks

together and overcomes the electromagnetic repulsion of protons to hold atomic nuclei

together. The quarks also carry an additional charge associated with this force that

comes in one of three varieties. These three charges are dubbed “red,” “green,” and

“blue,” in analogy to colors and their mixing properties. Similar to the role that

the photon plays in QED, a particle called the gluon is exchanged between particles

carrying this color charge. Quantum chromodynamics (QCD) shares many properties

with QED, but is complicated by the fact that the gluons themselves also carry color
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charge (while the photons do not carry electric charge). One consequence of this

complication is that the force between quarks grows with the distance between them,

permanently confining them into color-neutral groupings (e.g. red + blue + green).

Composite particles made up of bound quarks, such as protons and neutrons, are

called “hadrons.” In this way, the internal structure of a hadron is akin to a soup of

quarks and gluons all bound together. The quarks and gluons which make up hadrons

are generally referred to as “partons.”

Low-probability interactions, like the decays of relatively long-lived particles, are

described by a third fundamental force, called the weak nuclear force. This force is

actually mediated by three different bosons – the W+, W−, and Z. The W bosons are

themselves electrically charged, while the Z boson is electrically neutral. Unlike the

photon and gluon, the weak bosons are massive particles. As a result, the weak force

tends to be short-ranged and feeble. Nonetheless, there are important similarities

between the weak force and the electromagnetic force. So much so that in the late

1960s QED was extended into a unified theory of electromagnetism and the weak

interaction. Electroweak theory describes the symmetry between the photon and

the W+, W−, and Z bosons. At very high energies, the interactions mediated by

these four particles are indistinguishable. This symmetry is broken at low energies,

attributing mass to the weak bosons while keeping the photon massless and thereby

distinguishing the two forces.

The discussion so far has omitted the force of gravity. The hypothetical graviton,

a boson with spin 2, is the mediator of gravitational force. However, while equally

fundamental this interaction is certainly not equal in strength. Because of its promi-

nent presence in everyday experience, one would expect that gravity should play an
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important role in the interaction of the particles of the Standard Model. However, the

electromagnetic and strong forces are 36 to 38 orders of magnitude greater than grav-

ity. Even the weak force is 25 orders of magnitude stronger. A simple observation

demonstrates this disparity: the seemingly tiny strength of a common refrigerator

magnet held in place by the force of electromagnetism is sufficient to overcome the

gravitational force exerted on it by the entire mass of the Earth. Gravity is in fact

so feeble relative to the other three forces that it is negligible in all calculations of

processes involving the particles of the Standard Model.

Table 1.1: Particles of the Standard Model.

quarks leptons

Fermions
down (d) up (u) electron (e) electron neutrino (νe)
strange (s) charm (c) muon (µ) muon neutrino (νµ)
bottom (b) top (t) tau (τ) tau neutrino (ντ )

Bosons
gluon (g)
photon (γ)
weak bosons (W+,W−, Z)

Table 1.1 summarizes the constituents of the Standard Model. However, there is

one additional component which is missing. In order for the mathematical theory to

correctly describe their interactions, all particles must initially be massless. They then

acquire the effective masses we observe through some interaction mechanism. The

leading explanation, spearheaded by various theorists in the mid 1960s, generates

the observed masses of the particles of the Standard Model through an interaction

which breaks the symmetry between the electromagnetic and weak forces [3]. The

particle associated with this mechanism, commonly called the “Higgs boson” after

one of the leading investigators of its implications, remains the principal prediction of
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the Standard Model to be confirmed. In July of 2012, the ATLAS and CMS collab-

orations announced the discovery of a new boson with a mass of about 126 GeV/c2

that appears consistent with the expected signature of the Standard Model Higgs bo-

son [4]. Continued analysis of future data will be necessary to measure its properties

and conclusively determine whether this new particle is that predicted by the Higgs

mechanism.

As the mathematical framework to describe the Standard Model was being devel-

oped, a curious feature emerged. In 1928 physicist Paul Dirac proposed a formula-

tion to describe the interaction of fermions in a manner that is consistent with both

quantum mechanics and special relativity [5]. This formulation, known as the Dirac

equation, implies the existence of a new form of matter – fermions identical to the

familiar ones described above, but with opposite charge. When a particle of normal

matter and its “antimatter” counterpart interact they annihilate, converting their

energy into photons.

In 1932, just a few years after this revolutionary theoretical framework was pro-

posed, the first experimental discovery of an antiparticle was made [6]. Antielectrons

(dubbed “positrons”) were first observed in the products of cosmic ray interactions,

and later found to be an integral part of certain radioactive decays. Many other

antiparticles have since been discovered, built from the antiparticle partners of the

fermions of the Standard Model. Recently, whole atoms of antihydrogen built from

antiprotons and positrons have been fleetingly created and observed in the laboratory

[7]. One of the great mysteries of modern physics is to explain why the universe is

filled with matter while there is so little naturally-occurring antimatter.

Finally, we have described the elementary constituents of the Standard Model of
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Particle Physics. Fermions (and their antiparticle partners) comprise the matter –

the “stuff” – of the universe, while bosons mediate the fundamental forces between

them – electromagnetism, the strong force, and the weak force. Three quarks (or

three antiquarks) bind together to form a class of matter known as baryons. One

quark can pair up with one antiquark to form another class called mesons. The up

and down quarks bind together in groups of three to form the common and abundant

protons and neutrons, which comprise the nuclei of atoms. Electrons join these nuclei

to give rise to the chemical properties of the elements. The ghostly neutrinos only

interact via the weak interaction, but play roles in nuclear interactions and perhaps

even in the evolution of the universe. The quarks and antiquarks of the second and

third generations play important roles in more exotic and higher-energy interactions.

Still, the Standard Model is not yet complete. While it has proven wildly successful

in describing the fundamental constituents of the universe and their interactions, there

remain discrepancies between prediction and observation. The fact that neutrinos

oscillate between different flavors (generations) is nowhere predicted by the Standard

Model. Although the Standard Model predicts only a tiny asymmetry between matter

and antimatter, there must be a strong fundamental difference between the two.

Equal amounts should have existed at the beginning of the universe and would have

annihilated completely to photons, yet our universe appears to be dominated by

matter. What’s more, increasingly compelling astrophysical observations indicate

that the particles of the Standard Model can only account for 4% of the contents of

the universe, with the rest some new form of “dark matter” and “dark energy” about

which we know little and the Standard Model says nothing. There is much room

for physics beyond the Standard Model. Nature continues to tantalize with many
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mysteries to solve and the promise of many surprises to come.

1.1.2 The top quark

With the Standard Model neatly arranged in tabular form (Table 1.1), we now have

a nice and succinct pool from which to build much of the universe. Familiar matter

is built from the first generation particles; the proton consists of two up quarks and

one down quark; the neutron is built from two down quarks and one up quark; and

electrons orbit nuclei made up of protons and neutrons.

The particles of the second generation are “heavy cousins” of the first generation,

and the third generation particles are more massive still. Because of this, they do

not play a significant role in the behavior of matter at ordinary energies. They do

participate in important ways in high energy subatomic phenomena, though. Of

particular interest to the analysis presented in this dissertation is the top quark.

Last of the quarks to be discovered, the top quark proved elusive for years. After

the discovery of the bottom quark in 1977 by the E288 experiment at Fermilab [8], it

became clear that there was a third generation of quarks. (There is good reason to

believe there are only three generations of subatomic particles, but theorists remain

open to the possibility of more.) While the top quark was expected to be more massive

than the bottom quark, physicists were surprised by repeated failures to create it in

the laboratory with ever more energetic experiments.

Accelerators at Fermilab and CERN raced through the 1980s to make the discov-

ery. Although the UA1 and UA2 experiments at CERN’s Super Proton Synchrotron

discovered the massive W and Z bosons in 1983 [9][10], the top quark remained

undiscovered. Armed with a lower limit on its mass from CERN, physicists at Fer-
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milab were able to use the higher energy reach of the Tevatron accelerator to probe

larger masses. Finally, in 1995 physicists at the CDF and DØ experiments jointly

announced the discovery of the top quark [11]. Its mass was measured at approxi-

mately 175 GeV/c2, making it a subatomic particle as massive as an entire atom of

tungsten.

The large mass of the top quark makes it fertile ground for investigations into

a number of phenomena. The top quark decays almost exclusively to a W boson

and a bottom quark, in a process which happens much faster than the characteristic

timescale for strong interactions. Unlike the other quarks, which bind together into

hadrons well before they can decay, the top quark decays essentially as a free quark,

providing insights into the behavior of unconfined quarks. Furthermore, because it

is so massive (almost twice that of the W and Z bosons), the top quark also may

play an important role in the behavior of the weak force carriers and the breaking

of electroweak symmetry. In fact, important properties of the Higgs boson can be

extrapolated from precise measurements of the top quark mass.

1.2 Modern experimental collider physics

Probing the fundamental constituents of the universe is not straightforward. The

Standard Model neatly describes the interactions between fermions and bosons, but

the unimaginably tiny length scales and high energies at which the most interesting

of these interactions occur make these subjects difficult to observe directly.

In order to create the conditions in the laboratory in which Standard Model pro-

cesses can be practically studied, subatomic particles are accelerated to nearly the
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speed of light and collided head-on. Through mass-energy equivalence (E = mc2)

the large kinetic energy of these particles can be transformed into different, massive

particles like the weak bosons and the fermions of the second and third generations.

The various possible transformations all occur with differing probability, dependent

on the masses of the participating particles and the strength of their interactions.

Thus, an extremely large number of collision events must be analyzed in order to

make any statistically-significant measurement of particle properties.

The initial-state particles interact, perhaps scattering or perhaps annihilating,

and final-state particles exit the interaction. This process is called the “hard scat-

ter.” Many collider experiments have employed electrons and positrons as the initial

particles driven together toward the hard scatter. Accelerating such low-mass parti-

cles to higher energies becomes progressively more difficult as the added kinetic energy

is quickly radiated away. The largest modern collider experiments instead accelerate

protons, which suffer less from this effect at comparable energies. Of course, the

resulting collisions are somewhat more complicated. Rather than the entire proton

interacting with its collision partner, a quark or a gluon forming the internal structure

of the proton interacts with a quark or gluon from the other incident proton.

The initial-state particles interact probabilistically to produce an intermediate

state, which then produces two or more final-state particles. The properties of the

final-state particles – e.g. their flavors, masses, spins, energies, and directions – give

information about the intermediate state and the details of the interactions involved.

Often final-state particles from the hard scatter are not physically observable.

Quarks only manifest themselves as hadrons through a process called “hadronization.”

These and other particles may also be unstable, decaying into several less massive
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particles before traveling far from the point where they were produced. This collection

of associated final state particles is referred to as a “jet,” and is distributed over an

extended region of the detector. Measurement of the final state particles from the

hard scatter is therefore a complicated task involving the detection of a large number

of different particle species and careful extrapolation to reconstruct the particles from

which they all originated.

Measurement of collision events is facilitated by sophisticated particle physics

detectors consisting of many layers of arrays of various sensors designed to detect

the passage of a variety of particle species. One such detector experiment is called

ATLAS, consisting of a number of typical sensor types. Fig. 1.2 illustrates a cross-

sectional slice of the ATLAS detector, showing common particles produced in collision

events and the subdetectors designed to detect each type. There are two major classes

of subdetectors – tracking systems and calorimeters.

Trackers consist of a large number of small sensors designed to detect the passage

of electrically charged particles with a fine position resolution. Collections of “hits”

within the tracking volume are combined to reconstruct the path of individual charged

particles. Tracking detectors are usually situated inside a solenoidal magnetic field

oriented parallel to the collision axis. Because the path of a moving charged particle

is deflected perpendicular to the direction of the magnetic field in a way that depends

on its charge and momentum, the curvature of the resulting helical paths can be

measured to calculate each particle’s momentum.

Calorimeters are designed such that particles deposit all of their kinetic energy

within the detector volume, thereby providing a measurement of this energy. Particles

such as electrons and photons interact with the electrons in the calorimeter material,
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Figure 1.2: Various subdetectors of the ATLAS detector and the particles they spe-
cialize in measuring. (ATLAS Experiment c© 2012 CERN)

and electromagnetic calorimeters are optimized to capture them. Hadrons such as

protons and neutrons interact principally through elastic collisions with the nuclei

of the calorimeter material, so a different design is used for hadronic calorimeters.

Quarks and gluons from the underlying event evolve into jets of final-state parti-

cles which deposit their energy over a extended regions of the calorimeters and are

reconstructed by associating individual energy depositions into clusters.
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Muons produced in typical collision events occur with energies at which they are

so-called “minimally-ionizing particles” (MIP), meaning they lose very little energy as

they traverse the various materials making up the detector. They pass through the

electromagnetic and hadronic calorimeter systems almost unaffected. Outer layers

of additional tracking detectors extend the measured trajectories of muons, both

identifying them uniquely as muons and providing extra accuracy in the measurement

of their momenta.

1.3 Symmetry

We have already hinted at the role that symmetry plays in particle physics. The

organization of the particle zoo into groups of related particles pointed toward some

underlying symmetry between members of these groups. This symmetry led to the

development of the quark model, later experimentally verified. The behavior of the

weak and electromagnetic forces would be radically different from what we observe

were it not for electroweak symmetry breaking. Through the Higgs mechanism, the

symmetry between the photon and the W+, W−, and Z bosons is broken. Charge

reversal (flipping the electric charge of the electron and positron, for example), parity

(doing physics in a mirror), and time reversal are three other important symmetries

which play crucial roles in a variety of subatomic processes.

What is meant by symmetry, in the context of physics? A property of a system

is symmetric under some transformation if that transformation leaves that property

unchanged. The shape of a baseball is rotationally symmetric, because rotations of

the baseball leave its shape unchanged. However, the rotational symmetry of an
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American football is broken because one axis is elongated relative to the other two.

As an example more specific to particle physics, electromagnetism is symmetric under

reversal of charges. Opposite electric charges always attract and like-signed electric

charges always repel.

The deep connection between physics and symmetry was elucidated by the early

20th century mathematician Emmy Noether. Simply put, Noether’s theorem states

that any continuous symmetry of a physical system has an associated conservation

law. This simple statement has profound implications. The translational symmetry

of physics – the fact that the laws of physics are the same independent of the location

where an experiment is performed – leads directly to the conservation of momentum.

The unchanging nature of these laws over time leads directly to the conservation of

energy. The independence of the laws of nature on the orientation of an experiment

(in the absence of a symmetry-breaking effect such as the Earth’s gravity) leads to

the conservation of angular momentum.

Symmetries have direct consequences on the laws of nature, and broken symme-

tries can lead to profound effects. The laws of physics should be immutable under

so-called “CP-symmetry,” the product of charge reversal symmetry (swapping par-

ticles for their antiparticles) and parity symmetry (flipping all directions as through

a mirror). If this symmetry were broken strongly enough, it could provide a suffi-

cient mechanism to explain the aforementioned excess of matter over antimatter in

the universe. The Standard Model exhibits some CP violation, but far too weakly

to provide the observed excess. The search for additional mechanisms for strong CP

violation is one of the major challenges being addressed by modern particle physics.
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1.3.1 Lorentz symmetry

One particular symmetry is of interest in this analysis. Lorentz symmetry arises from

the laws of special relativity and posits that the laws of physics are invariant regardless

of the inertial (non-accelerating) reference frame in which they are observed. The

Lorentz transformation mixes rotations between reference frames with boosts between

reference frames moving with constant relative velocity. The constancy of the laws

of physics under Lorentz transformations is fundamental to our understanding of the

universe.

The Lorentz transformation was originally derived by physicist Hendrick Lorentz,

who sought to explain how the speed of light was found to be the same for all observers,

independent of their reference frame. Einstein later re-derived this transformation as a

natural mathematical statement stemming from the consequences of the revolutionary

postulates in his special theory of relativity [12]:

1. The laws by which the states of physical systems undergo change are

not affected, whether these changes of state be referred to the one or the

other of two systems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates with

the determined velocity c, whether the ray be emitted by a stationary or

by a moving body.

At the time of this development, the fact that the laws of physics should be

the same as measured by observers in any inertial reference frame was not a new

development. That all such observers measure the same speed for light was. Einstein

accepted these postulates and reconciled them into the special theory of relativity.
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The resulting Lorentz transformation describes how the coordinates in one inertial

reference frame correspond to the coordinates in another inertial reference frame.

Perhaps the most profound implication of this transformation is the fact that

it mixes the space and time coordinates of events in different reference frames. In

contrast to the long held beliefs of classical physics time can no longer be considered

a constant, and intervals between events (say, the ticks of a clock) are measured

differently by different observers in relative uniform motion. Some of the resulting

phenomena, including length contraction and time dilation, while fascinating and

deserving of a thorough discussion, are beyond the scope of this paper.

In order to take into account the fact that time and spatial coordinates transform

together under special relativity, the conventional three-element vector denoting po-

sition is extended to include the time coordinate. One common notation convention

for a “four vector” denoting position is (t, x, y, z). Similarly, the four vector denoting

momentum is (E, px, py, pz). Eq. (1.1) is the matrix parametrizing the rotation-free

Lorentz transformation of these four vectors, called a “boost.”

Lβ =



γ −βxγ −βyγ −βzγ

−βxγ 1 + (γ − 1)β
2
x

β2 (γ − 1)βxβy
β2 (γ − 1)βxβz

β2

−βyγ (γ − 1)βyβx
β2 1 + (γ − 1)

β2
y

β2 (γ − 1)βyβz
β2

−βzγ (γ − 1)βzβx
β2 (γ − 1)βzβy

β2 1 + (γ − 1)β
2
z

β2


. (1.1)

The factor ~β = ~v/c is the relative velocity of the new reference frame, expressed as a

fraction of the speed of light c. The Lorentz factor γ is defined as

γ =
1√

1− β2
. (1.2)
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To complete our mathematical description of the transformation between reference

frames, we consider the contribution from rotations. A general rotation in three

dimensions can be constructed by successive rotations about one Cartesian axis at

a time. The resulting matrix is a product of some combination of three rotation

matrices, Rx(φ), Ry(θ), and Rz(ψ). Each acts on the spatial components of a four

vector (since time is only affected by boosts and not spatial rotations).

Rx(φ) =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 , (1.3)

Ry(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 , (1.4)

Rz(ψ) =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 . (1.5)

A Lorentz transformation between different inertial reference frames can therefore be

constructed as an appropriate product of Eqs. (1.1), (1.3)–(1.5).

Violation of Lorentz symmetry would profoundly alter our understanding of the

nature of space and time. It would imply that there is a special reference frame or

“direction” in spacetime. As an example from particle physics, the probability of a

subatomic process (like qq̄ → tt̄) to occur could depend on the orientation of that

process with respect to this special direction. Such an observation would contradict
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the theory of special relativity and overthrow one of the most fundamental tenets of

physics.

1.3.2 CPT symmetry

A second symmetry of nature relevant to this analysis is called “CPT symmetry.”

The CPT theorem states that the physical laws governing the dynamics of particles

are invariant under the simultaneous inversion of three different symmetries. Charge

conjugation, C, reverses the charges of a particle, effectively transforming it into

its antiparticle. The parity transformation, P, reverses the sign of the three spatial

coordinates, analogous to considering the mirror image of a system and effectively

reversing the direction of vectors like position and linear momentum. While the

universe at macroscopic scales does not exhibit T symmetry (the reversal of the flow

of time), a fact demanded by the second law of thermodynamics, the dynamic laws

of physics are generally symmetric under reversal of the sign of the time coordinate.

While each of the C, P, and T symmetries is independently conserved by the

electromagnetic, gravitational, and strong forces, processes involving the weak force

are known to violate all three of these symmetries separately. The unique feature

of the weak force is that weak interactions occur with different strength depending

on a particle’s “chirality,” the relative alignment of its spin state to the direction

of its momentum. This force then violates, for example, P symmetry. Under a P

transformation a right-handed electron (one whose spin is aligned with its momentum)

would become a left-handed positron, which interacts weakly with a different strength

than a right-handed electron.

Although all three of these symmetries are known to be violated separately by
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the weak interaction, the laws of physics appear to remain invariant under their

simultaneous application. This equates to a universe in which all particles were

swapped for their antiparticles, all positions and momenta were mirror reversed, and

the flow of time was flipped. Violation of CPT symmetry could be observable in a

particle physics experiment through differences between the decay rate of a process

and its antiparticle analog (e.g. qb → q′t and q̄b̄ → q̄′t̄). This would have deep

implications for the compatibility of quantum mechanics with special relativity, and

would in fact imply violation of Lorentz symmetry as well [13].
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Chapter 2

The Standard-Model Extension

Among the foundational principals of modern physics are the Lorentz and CPT sym-

metries. Physical processes are invariant under transformations between inertial ref-

erence frames and under the simultaneous reversal of charge, parity, and the direction

of time. Because of their importance and fundamental nature in the description of

the universe, scientific prudence demands these tenets be rigorously tested. In order

to do so, we require a quantitative means of predicting the results of experiments as

governed by the expected laws of physics, as well as under the assumption of their

violation.

At its core, physics is built using the language of mathematics. The Standard

Model of Particle Physics can be described qualitatively at length (as in the pre-

vious chapter), or in a rigorous quantitative manner using advanced mathematics.

The Standard Model is relatively succinctly expressed through the formalism of La-

grangian mechanics, whereby all possible physical processes are described by various

terms in a Lagrange density. The resulting dynamics of interacting particles can be
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derived from this Lagrange density through various analytical and numerical tech-

niques.

The Standard Model is constructed under the explicit assumption of both Lorentz

and CPT invariance, excluding any process which violates either symmetry. However,

such processes can be reincorporated into the SM Lagrangian using a phenomenolog-

ical framework known as the Standard-Model Extension (SME) [2]. This framework

adds all possible Lorentz- and CPT-violating terms to the SM Lagrange density. By

scaling each of these terms with an appropriate coefficient, the SME can describe

these contributions in a model-independent way. Expectations for particle interac-

tions can then be calculated under the assumption of Lorentz or CPT violation in

various forms, independent of the specific mechanisms that may give rise to those

violations.

In this chapter we outline the mathematical form of the Standard Model and

describe the contributions from the SME which directly effect the top quark. We also

provide a brief discussion of some of the searches for Lorentz and CPT violation in

other particle sectors conducted utilizing the SME framework.

2.1 The Standard Model Lagrangian

The Standard Model is a quantum field theory, with elements represented by fields

and a Lagrange density describing the interactions between these fields. From the

Lagrange density, the dynamics of particles can be calculated. A detailed mathemat-

ical development of the SM can be found at Reference [14]; we seek only to present a

brief description of its mathematical form here.
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Each fermion is represented by a Dirac spinor, a mathematical object whose four

components are fields corresponding to the two spin states of both the fermion and

its antiparticle. Bosons are represented by vector fields which couple to the various

charges of the fermions. Gauge invariance, the freedom to multiply these boson fields

by an arbitrary phase without effecting the dynamics, restricts the forms that the

boson fields can take.

The symmetries of each interaction further specify the forms of the gauge boson

fields, and group theory is employed in the construction of the SM Lagrangian. The

U(1) symmetry group describes the forms that the photon field can take, with its

symmetry under electric charge reversal. The freedom to transform among the three

color charges means the gluon field is best represented by the SU(3) symmetry group.

A peculiar feature of the weak interaction is that it acts differently on left- and right-

handed fermions. A particle’s handedness, or “chirality,” is the combination of its

spin state with the direction of its momentum. The two chiralities effectively have

different weak charges, and this feature is represented by the SU(2) symmetry group.

The electromagnetic and weak forces are unified into four electroweak gauge boson

fields, and the addition of a scalar field is the simplest method of inducing electroweak

symmetry breaking (e.g. the Higgs mechanism). The relevant symmetry groups are

SU(2)L, acting on the left-handed chirality, and U(1)Y , coupling to a combination

of electric charge and chirality called “hypercharge” (Y ). Together with the strong

interaction, the combined gauge symmetry of the Standard Model is then

SU(3)color ⊗ SU(2)L ⊗ U(1)Y . (2.1)

The observed left-right asymmetry of the electroweak interaction makes organiza-
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tion of the fermion fields into left-handed doublets and right-handed singlets a natural

formulation. We have

LA =

(
(νe)L
eL

)
,

(
(νµ)L
µL

)
,

(
(ντ )L
τL

)
RA = eR, µR, τR (2.2)

for the lepton fields (where A is the generation index), and

QA =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
UA = uR, cR, tR

DA = dR, sR, bR (2.3)

for the quark fields. Because the neutrinos only interact via the SU(2)L interaction,

their right-handed chirality states are absent from the Standard Model. Although

experimental evidence, including the observation of flavor oscillations, has indicated

that neutrinos have a small mass (and therefore exhibit right-handed chirality in

appropriately boosted reference frames), within the Standard Model they are treated

as massless and only the left-handed fields are included.

The gauge boson fields are Ga
µ (a = 1, ..., 8), W i

µ (i = 1, 2, 3), and Bµ, correspond-

ing to the SU(3)color, SU(2)L, and U(1)Y symmetries, respectively. The associated

gauge invariant field strength tensors are
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2.1 The Standard Model Lagrangian 2. The Standard-Model Extension

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν ,

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ. (2.4)

The W and gluon tensors include self-interaction terms, controlled by the appropriate

coupling strengths g and gs and mixed by the respective structure constants εijk

and fabc of the corresponding symmetry groups. The Lorentz indices µ and ν label

components of the relevant four vector (t, x, y, or z). For notational brevity, we

employ the Einstein summation convention, where multiplication of two terms with

the same index implies a summation of the product over all values of the index.

The introduction of a doublet of scalar fields of the form

φ =

(
φ+

φ0

)
(2.5)

provides a mechanism for spontaneous electroweak symmetry breaking. The interac-

tion of the W and B fields with this doublet mixes them, giving rise to the familiar

W+, W−, Z, and photon (A) fields.

Aµ = cos θWBµ + sin θWW
3
µ

Zµ = sin θWBµ − cos θWW
3
µ

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.6)

with weak mixing angle
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2.1 The Standard Model Lagrangian 2. The Standard-Model Extension

cos θW =
mW

mZ

. (2.7)

The full Standard Model Lagrange density (before explicit electroweak symmetry

breaking) thus has the form

L =− 1

4
W i
µνW

µν
i −

1

4
BµνB

µν − 1

4
Ga
µνG

µν
a

+ L̄Aγ
µ

(
i∂µ +

g

2
τiW

i
µ −

g′

2
Bµ

)
LA

+ R̄Aγ
µ
(
i∂µ − g′Bµ

)
RA

+ Q̄Aγ
µ

(
i∂µ −

g

2
τiW

i
µ +

g′

6
Bµ +

gs
2
λaG

a
µ

)
QA

+ ŪAγ
µ

(
i∂µ +

2

3
g′Bµ +

gs
2
λaG

a
µ

)
UA

+ D̄Aγ
µ

(
i∂µ −

1

3
g′Bµ +

gs
2
λaG

a
µ

)
DA

+

∣∣∣∣(i∂µ − g

2
τiW

i
µ −

g′

2
Bµ

)
φ

∣∣∣∣2 + µ2φ†φ− λ(φ†φ)2

−
(
yLABL̄AφRB + yDABQ̄AφDB − yUABQ̄Aiτ2φ

∗UB + h.c.
)
. (2.8)

The constants g, g′, and gs parametrize the coupling strength between fermions

and the bosons mediating the weak isospin, hypercharge, and strong interactions,

respectively. The four Dirac matrices γµ mix components of the fermion spinors, the

τi are the three Pauli matrices (generators of the SU(2) symmetry group), and λa

are the eight Gell-Mann matrices (generators of SU(3)). The y matrices combine the

Yukawa couplings of the various fermion fields to the scalar doublet φ with additional

coupling terms that mix generations. The scalar potential µ2φ†φ− λ(φ†φ)2 contains

two free parameters µ and λ which describe its shape and are intimately connected
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2.2 SME addition to the top quark sector 2. The Standard-Model Extension

to the phenomena which emerge from the breaking of electroweak symmetry (for

example, the masses of the weak and Higgs bosons). There are of course many more

subtleties in this Lagrange density and deep implications of its terms that are beyond

the scope of this discussion.

2.2 SME addition to the top quark sector

The Standard-Model Extension adds a variety of terms to Eq. (2.8) in order to intro-

duce violation of Lorentz and CPT symmetry. Each of these terms is controlled by

a coefficient describing its relative contribution to SM processes. Because the SME

is a purely phenomenological framework, incorporating these violations in a model-

independent manner, these coefficients are not constrained to be the same for different

particle species.

A full list of terms within the minimal SME can be found in tables XXIX and

XXX of reference [15]. The SM Lagrangian can be extended by the addition of an

SME contribution (LSME). The terms in this contribution relevant to the quark sector

are
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2.3 Reference frames 2. The Standard-Model Extension

LSME = (aQ)µAB Q̄Aγ
µQB

+ (aU)µAB ŪAγ
µUB

+ (aD)µAB D̄Aγ
µDB

+ (cQ)µνAB Q̄Aγ
µ

(
i∂ν − g

2
τ iW ν

i +
g′

6
Bν +

gs
2
λaGν

a

)
QB

+ (cU)µνAB ŪAγ
µ

(
i∂ν +

2

3
g′Bν +

gs
2
λaGν

a

)
UB

+ (cD)µνAB D̄Aγ
µ

(
i∂ν − 1

3
g′Bν +

gs
2
λaGν

a

)
DB. (2.9)

The aµ-type coefficients have mass dimension 1 and control terms which are odd

under CPT reversal, while the unitless cµν-type coefficients control CPT-even terms.

In order to perform a model-independent investigation of the contribution from these

terms to processes involving top quarks, we consider the SME coefficients to be non-

zero only when A,B = 3, 3.

2.3 Reference frames

One of the implications of Lorentz violation is a dependence of physical processes

on the choice of inertial reference frame. In order to compare results from various

experiments, we must choose a standard reference frame in which we express our

observations. The coefficients of the Lorentz- and CPT-violating terms in the SME

are defined in the canonical Sun-centered reference frame (Fig. 2.1) [15]. This con-

vention provides a suitably constant reference frame over the lifetime of Earth and

near-Earth based experiments, varying only on the timescale of a century. We employ

the convention of using upper-case Lorentz indices µ, ν ∈ {T,X, Y, Z} to denote co-
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2.3 Reference frames 2. The Standard-Model Extension

ordinates in the Sun-centered reference frame and lower-case indices α, β ∈ {t, x, y, z}

for coordinates in the reference frame of an experiment.

Figure 2.1: The canonical Sun-centered inertial reference frame of the SME.

The canonical Sun-centered reference frame is defined by a right-handed Cartesian

coordinate system oriented so that the Z-axis points parallel to the Earth’s axis of

rotation. The X–Y plane then corresponds to the Earth’s equatorial plane. The X-

axis points toward the vernal equinox and the origin of the time coordinate is chosen

to coincide with the vernal equinox of the year 2000.

As the Earth rotates, the orientation of an Earth-based laboratory changes period-

ically relative to the Sun-centered reference frame. This period, called the “sidereal”

period, is the time it takes for the Earth to complete one rotation relative to the

“fixed” stars (the Sun-centered frame). Because the Earth is progressing along its

orbit as it rotates, the resulting “sidereal day” is slightly shorter than one solar day

(23 hours, 56 minutes, 4.091 seconds versus 24 hours).
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2.4 Some previous SME studies 2. The Standard-Model Extension

The relative velocity of the Earth about the Sun is around 30 km/s, corresponding

to a Lorentz gamma factor of approximately γ − 1 ≈ 10−9. The boost of an Earth-

based experiment relative to the Sun-centered reference frame is too small to produce

a measurable effect in a search for Lorentz violation in top quark events. Transforma-

tion between the reference frame of such an experiment and the Sun-centered frame

will therefore only involve rotations.

2.4 Some previous SME studies

CPT and Lorentz violation (LV) have been studied in a number of sectors of the

Standard Model including gravity, electromagnetic interactions, and several lepton

and baryon flavors. Indirect limits have even been set on the Higgs sector [16] before

the particle’s official discovery. Many of these studies take advantage of the expected

sidereal or annual variation in one or more observable phenomena. Although tight

constraints have been set on the magnitude of LV in a variety of particle sectors, such

constraints generally involve the light charged leptons and quarks. Because they only

interact weakly, the neutrino sector can be particularly difficult to study. Due to the

large masses of the charged members of the third generation, the b, t, and τ have only

relatively recently become accessible to experiments searching for LV.

Looking for sidereal modulations in the event rate of an experiment gives an eas-

ily accessible handle on possible Lorentz violation. For example, this technique has

been used to probe SME parameters in the neutrino sector. The MINOS experiment

examined the rate at which neutrinos produced at an accelerator at Fermilab arrived

at both the near detector [17] and the far detector [18]. This rate could be sensitive to
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2.4 Some previous SME studies 2. The Standard-Model Extension

various aµ- and cµν-type SME coefficients parametrizing CPT and Lorentz violation

in the neutrino sector through their effect on neutrino flavor oscillation parameters.

Because of the large baselines of neutrino experiments (typically hundreds of meters

to hundreds of kilometers), these measurements are often very sensitive to SME coef-

ficients. MINOS was able to set limits on various components of these parameters at

levels tighter than 10−20 and 10−23, respectively. The IceCube experiment in Antarc-

tica further improved some of these constraints by searching for a sidereal variation

in the flux of atmospherically produced muon neutrinos [19].

Like the lighter quarks, b quarks bind with other quarks immediately upon their

production and are only observable as part of a hadron system. However, effects

of CPT and Lorentz violation can still contribute to the properties of, for example,

B mesons. While it is difficult to directly access SME coefficients in these systems,

some linear combinations can be directly measured. The BaBar experiment set new

constraints on components of the effective SME coefficient (∆aB)µ governing CPT

violation in neutral B meson mixing. This coefficient describes the difference between

the effects of LV on the valence d and b quarks of the B0 meson, where (∆aB
0
)µ =

rd(aD)µ11−rb(aD)µ33 and the rq are due to quark-binding and renormalization effects.

By searching for a sidereal variation in the mixing of B0 and B̄0 mesons produced in

Υ(4S)→ BB̄ decays [20], the experiment constrained the terms ∆(aB
0
)X , ∆(aB

0
)Y ,

and ∆(aB
0
)T − 0.30∆(aB

0
)Z to be less than a few times 10−15. Observations of an

anomalous like-sign dimuon charge asymmetry in the B0
s − B̄0

s system at the DØ

detector provided a similar constraint in the Bs sector, where the magnitude of the

coefficient (∆aBs)T was limited to . 10−11 [21].

CPT and LV are not constrained to be the same for all particle species, so each
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2.4 Some previous SME studies 2. The Standard-Model Extension

sector of the SM must be tested. Because of its extremely large mass compared

to all other SM particles, the top quark has remained out of reach until recently.

The Tevatron and LHC particle colliders have reached energies and event rates high

enough to provide the first probe of CPT and Lorentz violation in top quark events.

Kostelecký and Berger have derived the expected contribution from SME terms to the

cross section for pair production of t and t̄ quarks [22]. The next chapter summarizes

this result and explores how it can be utilized to set the first limits on Lorentz violation

in the top quark sector.
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Chapter 3

Lorentz Violation in the

Top-Quark Sector

We investigate Lorentz and CPT violation in the top quark sector by examining the

expected and observed production of top and antitop quark pairs (tt̄) within a col-

lider experiment. The expectation for the tt̄ event rate is calculated from the matrix

element describing the tt̄ production and decay process, including appropriate terms

from the SME [22]. This represents the probability amplitude for the process to occur

for specified initial- and final-state momenta, and is derived from the appropriate La-

grange density. We compare this matrix element to the Standard Model expectation

in order to estimate the unique contribution from Lorentz- and CPT-violating effects.

Fig. 3.1 illustrates the process by which a tt̄ pair is produced from a proton-

antiproton collision and subsequently decays “semileptonically” to a final state in-

cluding one charged lepton. The SME contributions to the Lagrange density listed in

Eq. (2.9) affect the propagators of the t, t̄, b, and b̄ quarks, as well as the t → bW+
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3. Lorentz Violation in the Top-Quark Sector

Figure 3.1: Illustration of the production and decay of a tt̄ pair.

and t̄ → b̄W− vertices. Although the left-handed b-quark field in the doublet (Q3)

does enter this process at the t-b-W vertices, the right-handed b-quark singlet field

(equivalent to D3) does not participate. Additionally, terms in this matrix element

controlled by the aµ-type coefficients are suppressed at leading order [22]. While these

coefficients controlling CPT-even terms in the Lagrange density do not produce ob-

servable effects at leading order in this tt̄ process, this analysis is sensitive to several of

the cµν-type coefficients which couple to potentially observable effects from CPT-odd

terms. The SME coefficients of interest to this analysis are therefore (cQ)µν33 and

(cU)µν33.

For brevity, we define (cL)µν = (cQ)µν33 and (cR)µν = (cU)µν33. These matrices

of coefficients are each symmetric and traceless. We also define the following linear

combinations, in order to compare our results to those of SME studies in other particle
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3.1 SME matrix element 3. Lorentz Violation in the Top-Quark Sector

sectors.

cµν = (cL)µν + (cR)µν ,

dµν = (cL)µν − (cR)µν . (3.1)

3.1 SME matrix element

The phenomenological background of this analysis is based on the analytical work of

V. A. Kostelecký and M. S. Berger of the Indiana University Center for Spacetime

Symmetries (IUCSS). We provide the results of their derivation here.

At leading order in the SME coefficients, the matrix element describing the pro-

duction and decay of a tt̄ pair involves only the (cL)µν and (cR)µν coefficients. The

squared matrix element for this process has the form

|M|2 = PFF̄ + (δPp)FF̄ + (δPv)FF̄ + P (δF )F̄ + PF (δF̄ ). (3.2)

The P terms depend on the parton momenta at the tt̄ vertex, while the F and F̄

terms are functions of the parton momenta in the t and t̄ decay vertices, respectively.

The first term, PFF̄ , is the Lorentz-invariant contribution from the SM tt̄ process.

This receives corrections from the SME terms in the Lagrange density. These are

associated with the t and t̄ propagators (δPp), the production vertex (δPv), and the

t and t̄ decay vertices (δF and δF̄ , respectively). We list the full expression for each

of these seven terms in the process qq̄ → tt̄→ bW+b̄W− → b¯̀νbq′q̄′′ below.

In terms of the four-momenta of the various particles in the event, the components

of the leading-order SM tt̄ matrix element are
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P =
g4
s

18E4

[
(pq · pt)(pq̄ · pt̄) + (pq · pt̄)(pq̄ · pt) + (pq · pq̄)m2

t

]
, (3.3)

F = −4g4
W

[
(pν · pb)(p¯̀ · pt)

(m2
t −M2

t )2 + (MtΓt)2

] [
1

(m2
¯̀ν
−M2

W )2 + (MWΓW )2

]
, (3.4)

and

F̄ = −4g4
W

[
(pq′ · pb̄)(pq̄′′ · pt̄)

(m2
t̄ −M2

t )2 + (MtΓt)2

][
1

(m2
q′q̄′′ −M2

W )2 + (MWΓW )2

]
. (3.5)

Here, gW is the weak coupling constant and Mt, Γt, MW and ΓW are the masses

and widths of the top quark and W boson. The quantities m¯̀ν and mq′q̄′′ are the

invariant masses of the lepton and neutrino from the W+ decay and the two jets from

the W− decay, respectively, and mt (mt̄) is the invariant mass of the three final state

partons from the t → bW+ (t̄ → b̄W−) decay. The quantity E is the energy of the

initial-state quark or antiquark in the center-of-mass frame of the production vertex,

corresponding to the Mandelstam variable ŝ = 4E2.

The SME contribution from the t and t̄ propagators is

δPp =
g4
s

18E4
((cL)µν + (cR)µν)

[
(pq · pt)(pµt̄ p

ν
q̄ ) + (pq · pt̄)(pµt pνq̄ )

+ (pq̄ · pt)(pµt̄ p
ν
q ) + (pq̄ · pt̄)(pµt pνq )

]
, (3.6)

and the contribution from the production vertex is
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δPv =
g4
s

18E4
((cL)µν + (cR)µν)

[
− (pq · pq̄)(pµt pνt̄ + pµt̄ p

ν
t )

− (pt · pt̄ +m2
t )(p

µ
q p

ν
q̄ + pµq̄ p

ν
q )

+ (pq · pt)pµq̄ pνt̄ + (pq · pt̄)pµq̄ pνt

+ (pq̄ · pt)pµq pνt̄ + (pq̄ · pt̄)pµq pνt
]
. (3.7)

The SME contributions at the t→ bW+ and t̄→ b̄W− vertices are

δF = 2g4
W

[
1

(m2
t −M2

t )2 + (MtΓt)2

][
1

(m2
¯̀ν
−M2

W )2 + (MWΓW )2

]
(cL)µν

×
[
(pb · pt)(pµνpν¯̀ + pµ¯̀p

ν
ν) + (pb · pν)(pµt pν¯̀ + pµ¯̀p

ν
t )

− (pb · p¯̀)(p
µ
t p

ν
ν + pµνp

ν
t )− (pt · pν)(pµb p

ν
¯̀ + pµ¯̀p

ν
b )

+ (pt · p¯̀)(p
µ
b p

ν
ν + pµνp

ν
b ) + (pν · p¯̀)(p

µ
b p

ν
t + pµt p

ν
b )
]

(3.8)

and

δF̄ = 2g4
W

[
1

(m2
t̄ −M2

t )2 + (MtΓt)2

][
1

(m2
q′q̄′′ −M2

W )2 + (MWΓW )2

]
(cL)µν

×
[
(pt̄ · pb̄)(p

µ
q′p

ν
q̄′′ + pµq̄′′p

ν
q′) + (pt̄ · pq′)(pµb̄ p

ν
q̄′′ + pµq̄′′p

ν
b̄ )

− (pt̄ · pq̄′′)(pµb̄ p
ν
q′ + pµq′p

ν
b̄ )− (pb̄ · pq′)(p

µ
t̄ p

ν
q̄′′ + pµq̄′′p

ν
t̄ )

+ (pb̄ · pq̄′′)(p
µ
t̄ p

ν
q′ + pµq′p

ν
t̄ ) + (pq′ · pq̄′′)(pµt̄ p

ν
b̄ + pµ

b̄
pνt̄ )
]
, (3.9)

where q′ is a down-type quark and q̄′′ is an up-type antiquark. The other possible

semileptonic decay mode tt̄ → bW+b̄W− → bq′q̄′′b̄`ν̄ is related to these expressions

by the replacements ν → q′, ¯̀→ q̄′′, q′ → `, and q̄′′ → ν̄.

It is important to note that the production corrections δPp and δPv depend on both

39



3.2 Time-dependent cross section 3. Lorentz Violation in the Top-Quark Sector

(cL)µν and (cR)µν , while the decay corrections δF and δF̄ only depend on (cL)µν . This

will effect the sensitivity of our analysis to the different coefficients. Furthermore, for

tt̄ pairs produced in an Earth-based laboratory, production probabilities for various

parton four-momenta configurations will depend on the orientation of the laboratory

frame relative to the Sun-centered reference frame. The coefficients (cL)µν and (cR)µν

are defined in the Sun-centered reference frame, and the relative orientation of the two

frames will vary as the Earth rotates. This effect will introduce a time dependence

in the SME contribution to the tt̄ production and decay process.

Finally, we also note that the matrix element of Eq. (3.2) represents the production

process qq̄ → tt̄, but tt̄ pair production can also proceed through gluon fusion (gg →

tt̄). However, in pp̄ collisions at the Tevatron the latter production mode contributes

only about 15% to the total event rate and is therefore suppressed. We expect this

matrix element to suffice for the first measurement of Lorentz violation in the top

quark sector at the DØ experiment. We will comment further on its applicability to

experiments at the LHC during the discussion of the expectations for this analysis at

the ATLAS detector.

3.2 Time-dependent cross section

To derive the observational effects of this matrix element, we consider the expression

for the total effective cross section for tt̄ production and semileptonic decay. This

quantity represents the probability that a tt̄ pair is produced in the collision interac-

tion, decays to a semileptonic final state, and is accepted, detected, and reconstructed

by the experiment. The total cross section σ(t) observed in the detector is
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σ(t) =

∫
dx ε(x)B

∫
dy

dσSME

dy
(y, t)P (x|y). (3.10)

B is the branching fraction of tt̄ into final states containing a single lepton (e or µ).

x reflects the observed kinematic variables, i.e. the four-momenta of the measured

jets and leptons, while P (x|y) describes the probability of the partonic final state

y to be measured as x in the detector. ε(x) is the efficiency (acceptance, trigger,

and reconstruction) to accept an event specified by x. dσSME/dy contains the SME

parameters we wish to determine and is dependent on time through the changing

orientation of the detector frame relative to the canonical Sun-centered reference

frame.

We expand the expression for the differential cross section, including SME terms,

by comparing it to the SM differential cross section dσSM/dy.

dσSME

dy
=
dσSME/dy

dσSM/dy

dσSM

dy
. (3.11)

This ratio of differential cross sections is equivalent to the ratio of the squared matrix

element with SME corrections (|M|2SME) to the squared matrix element without those

corrections (|M|2SM). We can therefore define an event weight w(y, t) which collects

the SME contribution to the tt̄ process as a function of parton momentum and time.

w(y, t) =
dσSME/dy

dσSM/dy
=
|M|2SME

|M|2SM

. (3.12)

Inserting this expression into Eq. (3.10), we find

σ(t) =

∫
dx ε(x)B

∫
dy w(y, t)

dσSM

dy
P (x|y), (3.13)
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where w(y, t) can be expanded as

w(y, t) =
1

PFF̄

(
PFF̄ + (δPp + δPv)FF̄ + P (δF )F̄ + PF (δF̄ )

)
= 1 + ((cL)µν + (cR)µν)

(
δP µν

p

P
+
δP µν

v

P

)
+ (cL)µν

(
δF µν

F
+
δF̄ µν

F̄

)
. (3.14)

We define δP µν
p , δP µν

v , δF µν , and δF̄ µν as in Equations (3.6–3.9) prior to contraction

with the SME coefficients (cL)µν and (cR)µν .

3.2.1 Monte Carlo approximation

The integrals in Eq. (3.13) can be approximated using a set of simulated (Monte Carlo)

events generated via Standard Model semileptonic tt̄ production and reconstructed

using a full detector simulation. Events are generated with pythia [23] and the

subsequent final state particles in each event are propagated through a simulation of

the detector in order to model the detector response. We can discretize the parton

phase space y into ny bins such that

σ(t) ≈
∫
dx ε(x)

ny∑
i

w(yi, t)P (x|yi)B
∫
yi

dy
dσSM

dy

≈
∫
dx ε(x)

ny∑
i

w(yi, t)P (x|yi)B∆σSM
i . (3.15)

Here, yi is the set of four-momenta at the center of phase-space bin i, and ∆σSM
i is

the contribution to the total SM cross section attributed to that bin of phase space.

∆σSM
i can be related to the number of Monte Carlo events generated in i (ni), the

total number of Monte Carlo events generated over the entire phase space of y (nMC),

and the resulting total Standard Model cross section for tt̄ production (σSM):
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∆σSM
i = ni

σSM

nMC

. (3.16)

Using this relationship,

σ(t) ≈ σSM

nMC

B
∫
dx ε(x)

ny∑
i

w(yi, t)P (x|yi)ni. (3.17)

In the limit that the number of bins ni approaches infinity, the occupancy of any

bin i becomes either 0 events or 1 event. The expression for the cross section then

simplifies to

σ(t) ≈ σSM

nMC

B
∫
dx ε(x)

nMC∑
j ∈MC

w(yj, t)P (x|yj), (3.18)

with the summation now over the number of generated Monte Carlo events.

To model the detector response P (x|y), the detector simulation transforms each set

of generator level parton momenta y into a set of final state observables x, randomly

selecting one of several possible x for each y. This smearing across several observable

final states is small, and we can treat P (x|y) as approximately one-to-one. This

implies

σ(t) ≈ σSM

nMC

B
nMC∑
j ∈MC

ε(xj)w(yj, t). (3.19)

We can now substitute Eq. (3.14) into Eq. (3.18). Expanding the sum, we find
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σ(t) ≈ σSM

nMC

B
nMC∑
j ∈MC

ε(xj)

[
1 +

(
(cL)µν + (cR)µν

)(δPp(yj, t)
P (yj)

+
δPv(yj, t)

P (yj)

)

+ (cL)µν

(
δF µν(yj, t)

F (yj)
+
δF̄ µν(yj, t)

F̄ (yj)

)]
. (3.20)

The detector efficiency (acceptance, trigger, reconstruction, etc.) ε(xj) = 1 if the

simulated event xj is accepted by the trigger and reconstruction algorithms, while

ε(xj) = 0 if it is rejected. The summation in Eq. (3.20) then runs over the number of

accepted Monte Carlo events (nAcc) and can be expressed as

nAcc∑
k∈Acc

[
1 +

(
(cL)µν + (cR)µν

)(δPp(yk, t)
P (yk)

+
δPv(yk, t)

P (yk)

)

+ (cL)µν

(
δF µν(yk, t)

F (yk)
+
δF̄ µν(yk, t)

F̄ (yk)

)]
. (3.21)

We define matrices AµνP and AµνF corresponding to the averages of the appropriate

SME contributions as

AµνP =
1

nAcc

nAcc∑
k∈Acc

(
δP µν

p (yk)

P (yk)
+
δP µν

v (yk)

P (yk)

)
, (3.22)

AµνF =
1

nAcc

nAcc∑
k∈Acc

(
δF µν(yk)

F (yk)
+
δF̄ µν(yk)

F̄ (yk)

)
. (3.23)

Using these definitions to simplify Eq. (3.20), we find

σ(t) ≈ σSM B
nAcc

nMC

[
1 +

(
(cL)µν + (cR)µν

)
AµνP + (cL)µνA

µν
F

]
. (3.24)

The quantity nAcc/nMC represents the total efficiency ε (the combined fiducial, trigger,

and reconstruction efficiencies) to accept and reconstruct a semileptonic tt̄ event in
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the detector. The factor σSM B ε is the product of the SM cross section, the branching

fraction to the `+jets final states, and the overall efficiency.

The matrices AµνP and AµνF are the averages of the kinematic components of the four

δ terms in the ratio |M|2SME/PFF̄ , evaluated in the Sun-centered reference frame. We

wish to evaluate them in the reference frame of the experiment, and so introduce the

matrix Rµ
α(t) to transform these terms from the detector frame to the Sun-centered

frame. The final, full expression for the time dependent tt̄ cross section into semilep-

tonic final states, including Lorentz violating contributions from the SME in the top

quark sector, is

σ(t) ≈ σSM B ε
[
1 +

(
(cL)µν + (cR)µν

)
Rµ
α(t)Rν

β(t)AαβP + (cL)µνR
µ
α(t)Rν

β(t)AαβF

]
.

(3.25)

For brevity we collect the SME contribution to Eq. (3.25) into the function fSME(t).

σ(t) ≈ σSM B ε (1 + fSME(t)) . (3.26)

A note on LO vs NLO

While the Monte Carlo data set used for this analysis was produced using next-to-

leading-order (NLO) tt̄ processes, the SME matrix element was calculated at leading

order (LO). However, if we assume that the NLO corrections to the LO events are the

same for calculations including SME terms, we find that the LO SME matrix element

is sufficient to calculate event weights for the NLO SM Monte Carlo events.

Let p be the set of four-momenta in the event describing the contributions at lead-

ing order, and q be the four-momenta in the event describing the NLO contributions
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(i.e. the extra particles in the higher-order diagrams beyond the fundamental par-

ticipants in the tt̄ production and decay process). Define a k-factor kNLO(p, q) such

that

dσNLO

dp dq
= kNLO(p, q)

dσLO

dp
. (3.27)

We assume that kSME
NLO(p, q) ≈ kSM

NLO(p, q) ≡ k(p, q). As the size of the SME coeffi-

cients decreases, this approximation becomes more exact. In the case of small SME

coefficients we expect the difference to be negligible.

This assumption yields

wNLO(p, q, t) ≡ dσSME
NLO/dp dq

dσSM
NLO/dp dq

=
k(p, q)

(
dσSME

LO /dp
)

k(p, q) (dσSM
LO/dp)

≡ wLO(p, t). (3.28)

We can therefore determine the expected tt̄ cross section by averaging the weights

wLO calculated for each event in a set of SM tt̄ events produced with a next-to-leading-

order Monte Carlo generator.

3.3 Experimental signature

It is clear from Eq. (3.25) that the Lorentz-violating contributions from the SME

add terms which couple to the orientation and boost of the Earth-based experimental

reference frame relative to the canonical Sun-centered reference frame. The relative

velocity of the Earth as it revolves about the Sun is small (about 10−4c), and the

associated boost effect is one part in 10−9. This implies that the sensitivities of

the corresponding SME coefficients will be suppressed. There remains, however, a
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potentially sizable contribution from the relative orientation of the experiment frame

to the Sun-centered frame. This orientation changes as the Earth rotates, introducing

a periodic time dependence of one sidereal day (Fig. 3.2).

Figure 3.2: Illustration of the relationship between the reference frame of an experi-
ment and the Sun-centered reference frame. (Earth and Sun image credits: NASA)

We expect that any observable effects of Lorentz violation in the top quark sector

would manifest as a sidereal time dependence in the tt̄ event rate. We search for such

signs of LV in the top sector, as parametrized by the SME, using tt̄ events produced

by the Tevatron proton-antiproton collider and detected by the DØ experiment. The

following chapter provides an overview of these facilities. Chapter five discusses the

methods utilized by the DØ experiment to select candidate tt̄ events and estimate

the purity of such samples. Chapter six discusses the expected effect on the tt̄ event

rate due to the time dependent cross section described by Eq. (3.25), and presents

the results of our analysis.
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Chapter 4

The DØ Experiment

The partnership between the DØ experiment and the Fermilab Tevatron collider has

facilitated the exploration of frontier particle physics and the expansion of our under-

standing of the fundamental constituents of the universe. The Tevatron [24] delivered

collisions between protons (p) and antiprotons (p̄) with a center-of-mass energy of

1.96 TeV until its shutdown in September of 2011. Located at one of the points along

the Tevatron synchrotron ring where beams of proton and antiproton intersect, the

DØ detector [25] collected data about the final-state particles resulting from these

ppbar collisions. With the end of the Tevatron’s operations the DØ detector is being

prepared for decommissioning and dismantling, although analysis of data collected

by the experiment continues.

In tt̄ production at this pp̄ collision energy, about 85% of the time a quark from

the proton interacts with an antiquark from the antiproton, while the rest of the time

the fundamental interaction is between two gluons [26]. From this data, members

of the DØ collaboration reconstruct and measure the properties of the initial, inter-
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mediate, and final-state particles participating in the collision events. The detector

was designed to provide sensitivity to a wide range of Standard Model processes and

event topologies, making it a tool which provides a model-independent probe of par-

ticle interactions. This chapter seeks to provide a basic overview of the accelerator

and detector. More detailed information can be found in references [24]–[25].

The DØ detector consists of many layers of sensitive radiation detectors, orga-

nized into subdetectors that each specialize in measuring properties of specific types

of particles. A central tracking system provides measurements used to reconstruct

the trajectories of charged particles and the positions of event vertices. The track-

ing detectors are located within a magnetic field oriented parallel to the collision

axis, bending the trajectories of charged particles to provide a measurement of their

momenta. After traversing the central tracking volume, particles from the collision

event reach a sophisticated liquid-argon/uranium calorimeter system. Particles such

as electrons and photons are absorbed by electromagnetic calorimeters, providing a

measurement of their kinetic energy. The energy of strongly-interacting particles,

such as protons and neutrons, is absorbed by both the electromagnetic calorimetry

and further layers of hadronic calorimeters. Because muons deposit only a small

fraction of their energy as they travel through the calorimeters, additional layers of

charged particle tracking detectors comprise the outer-most layers of the DØ detector.

Iron toroidal magnets are embedded in this muon spectrometer system to provide an

additional momentum measurement. Finally, the only signature of weakly-interacting

neutrinos is an imbalance in the reconstructed transverse momentum of the event.

Numerous discoveries and precision measurements have been made at the DØ

experiment over its lifetime. During the initial run from 1992–1999 (Run I), the
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experiment produced perhaps its most famous result – the joint discovery, with the

CDF collaboration, of the top quark [11]. Since then, the DØ collaboration has made

accurate measurements of many of its properties [27]. Precision measurements of

many other components of the Standard Model have also been made, including the

mass of the W bosons [28], gauge boson coupling strengths [29], and mixing of Bs

and B̄s mesons [30]. The experiment has placed many new limits on new physics

beyond the Standard Model such as supersymmetry [31], leptoquarks [32], and extra

dimensions [33]. DØ, together with the CDF experiment, also helped narrow the

window in which the elusive Higgs boson may reside [34].

Between 2000 and 2001, the Tevatron accelerator facility was upgraded to improve

the delivered luminosity by a factor of almost 10. During this time, several upgrades

were made to the DØ detector. The data taking period from 2001 to 2011 is referred

to as Run II. This chapter provides a brief overview of the Tevatron accelerator and

a detailed description of the upgraded DØ detector used to gather data during this

period.

4.1 The Fermilab Tevatron collider

The Tevatron collider was a synchrotron used to accelerate and collide counter-

rotating beams of protons and antiprotons. The collider was the final component

of a multistage accelerator facility (Fig. 4.1) designed to generate both protons and

antiprotons, accelerate them to high energies, and provide beams to several different

experiments.

The chain which shepherds protons toward collisions begins at a Cockcroft-Walton
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Figure 4.1: The Fermilab accelerator complex.

generator, where hydrogen gas is ionized into H− ions that are pre-accelerated to 750

keV. The negative ions then enter a linear accelerator (Linac) consisting of a series of

RF accelerating cavities which increase the beam energy to 400 MeV. The electrons

are then stripped from the H− ions by a carbon foil, leaving the protons to pass into

the first synchrotron stage. The Booster, a small synchrotron 474 m in circumference,

further accelerates the beam to an energy of 8 GeV.

From the Booster, the proton beam travels to the Main Injector (MI). At 3.3 km in

circumference, this synchrotron plays several important roles in Fermilab operations.

The MI accumulates several proton bunches from the Booster into one high-intensity

bunch and accelerating it to 150 GeV for, tasks which included injection into the

Tevatron. The MI also accelerates proton bunches to 120 GeV, some of which are
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directed at a fixed nickel target where a variety of secondary particles are produced,

including antiprotons. For pp̄ collisions in the Tevatron, these antiprotons were ac-

cumulated and fed back into the MI for acceleration before injection into the final

accelerator stage. Uncollided antiprotons from the Tevatron were re-injected into

the MI for deceleration before traveling to the Recycler, installed in the MI tunnel

in 2005 to increase the Tevatron’s luminosity performance. These antiprotons were

stored in the Recycler and later combined with additional antiproton bunches from

the antiproton source before returning to the MI for acceleration and injection into

the Tevatron.

The final synchrotron stage was the Tevatron. Proton and antiproton beams

counter-circulated through a 6.3 km ring of 774 niobium-titanium (NbTi) supercon-

ducting dipole magnets and 216 NbTi superconducting quadrupole magnets, cooled

with liquid helium maintained at a temperature of approximately 4 K. Interlaced

with these steering and focusing magnets, RF cavities accelerated the beams to 0.98

TeV each. Each beam consisted of 36 bunches of particles, with close to 1011 protons

and 1010 antiprotons in each bunch. Bunches from the proton and antiproton beams

intersected every 396 ns at two locations along the circumference of the Tevatron.

At the peak operating luminosity, an average of about 12 inelastic pp̄ interactions

occurred in each bunch crossing with a center-of-mass energy of up to
√
s = 1.96

TeV. Two multipurpose particle detectors, the DØ and CDF detectors, were located

at these interaction regions and studied the products of these high-energy collision

events.
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4.2 The DØ detector

Named simply for the intersection point at which it is located on the Tevatron ring, the

DØ detector is a complex and sophisticated multipurpose particle physics experiment

designed to record the products of pp̄ collisions delivered by the accelerator. The de-

tector surrounds the interaction region with cylindrical symmetry along the beamline

and provides nearly complete coverage in solid-angle. Fig. 4.2 provides an overview

of the detector layout through a three-quarter cutaway perspective. Fig. 4.3 shows

a detailed view of the detector in cross section, with the central tracking system,

calorimeters, and muon spectrometer labeled. Proton-antiproton interactions were

distributed as a 20 cm-wide Gaussian distribution along the z-axis with a typical

maximum transverse size of a few tens of micrometers, occurring within a beryllium

beam pipe of approximately 19 mm in radius.

Figure 4.2: The DØ detector. A pair of physicists in their natural environment
illustrates scale.
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Figure 4.3: Cross section of the DØ detector in x− z.

The DØ detector employs a right-handed coordinate system with the z-axis ori-

ented along the proton beam direction. The y-axis is upward, and the x-axis points

away from the center of the accelerator. The azimuthal and polar angles φ and θ are

measured relative to the x- and z-axis, respectively, while the r coordinate denotes the

perpendicular radial distance from the z-axis. The pseudorapidity, η = − ln[tan(θ/2)],

is a good approximation to the true rapidity y = 1/2 ln[(E + pzc)/(E − pzc)] in the

practical limit (mc2/E)→ 0. Regions of large |η| are referred to as “forward” regions

in the detector.

4.2.1 Central tracking system

At the innermost volume of the DØ detector, two sophisticated subdetectors provide

spatial position data along the paths of charged particles produced in the interaction
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region. The Silicon Microstrip Tracker (SMT) and the Central Fiber Tracker (CFT)

are situated within the 2 T field of a superconducting solenoidal magnet oriented

along the detector’s z-axis (Fig. 4.4). Charged particles experience a bending force

due to this magnetic field, curving their paths into helical trajectories. The radius of

curvature depends on the strength of the magnetic field and the transverse component

of the particle’s momentum relative to the field, while the direction of curvature is

determined by the sign of the charge. Reconstructed tracks of charged particles can be

extrapolated forward to the calorimeters and backward to the interaction point. The

central tracking system therefore serves two vital functions for event reconstruction:

1) reconstructing tracks of charged particles and 2) reconstructing vertices from the

ensemble of tracks in the event.

Figure 4.4: The DØ central tracking system.
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The SMT and CFT together provide accurate track momentum and vertex po-

sition resolution. Tracks can be reconstructed up to pseudorapidities |η| < 2.5, and

primary interaction vertices can be resolved with an accuracy of about 35 µm in the

transverse plane. The high impact parameter resolution can resolve secondary ver-

tices resulting from the decay of hadrons containing b-quarks, providing a method of

tagging jets of particles originating from b-quarks. Combined transverse momentum

resolution δpT/pT in the central region ranges from 2% for tracks with pT = 1 GeV

to 11% for tracks with pT = 100 GeV.

The SMT is a finely segmented tracking detector which surrounds the beryllium

beam pipe at the core of the detector. The central region of the SMT consists of barrel

modules oriented along the beam pipe, providing r-φ measurements, interspersed with

disk modules to provide both r-z and r-φ measurements, while assemblies of disk

modules occupy the forward regions. Together the SMT’s barrel and disk modules are

comprised of about 800,000 individual silicon sensors and provide a position resolution

of about 20 µm.

The CFT provides additional tracking in the region 20 to 52 cm from the beam

pipe. It consists of layers of scintillating fibers, alternating between orientations

parallel to the beam axis and at a stereo angle of ±3 degrees relative to that axis.

The fiber material produces a flash of light when ionized by a passing charged particle.

This flash of light is transmitted along the fiber to solid-state photon counters. Signals

from successive layers are combined to construct spatial position measurement, with

each doublet layer providing a resolution of about 100 µm.
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4.2.2 Calorimetry

The DØ calorimeter systems are divided into three parts – the central calorimeter

(CC) section covering |η| up to about 1.1 and two endcap calorimeters (EC) that

cover regions up to |η| ≈ 4.2. Jets can be reconstructed in the central calorimeter

with relative transverse energy resolution around 10%. The calorimeters use liquid

argon as the active medium, and each is housed in a separate cryostat to maintain the

detector at a temperature of approximately 90 K. Preshower detectors sandwiched

between the calorimeter cryostats and the central solenoidal magnet provide addi-

tional measurements for both tracking and calorimetry, and scintillators positioned

between the CC and EC cryostats provide additional measurements of developing

calorimeter showers within the overlap region.

Figure 4.5: The DØ calorimeters.

Each calorimeter is divided into layers of electromagnetic calorimetry and hadronic
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calorimetry of varying granularity (Fig. 4.5). The electromagnetic (EM) calorimeter

modules use thin plates of depleted uranium for absorber plates. The absorber plates

of the finely segmented hadronic sections are made from a uranium-niobium (2%)

alloy, while the coarse hadronic sections contain thick plates of copper (in the CC)

or stainless steel (in the EC).

4.2.3 Muon spectrometer

The characteristic energies of muons produced in collision events at the Tevatron

make them minimally ionizing particles (MIP), meaning they loose only a tiny frac-

tion of their energy through interactions with detector materials and pass through

the calorimeter volume unabsorbed. The DØ detector therefore operates with an ad-

ditional tracking volume outside of the calorimeter systems. This muon spectrometer

consists of two subdetector types – proportional drift tubes and scintillation trigger

counters. Figs. 4.6 and 4.7 show exploded views of the distribution of these two sub-

detector systems, respectively. 10 cm-diameter proportional drift tubes (PDT) cover

the region |η| < 1, and smaller 1 cm mini drift tubes (MDT) cover the forward regions

1 < |η| < 2. The scintillation trigger counters provide additional muon position data,

as well as information for triggering and to reduce the cosmic-ray background. A 1.8

T toroidal magnet system lies between the A- and B-layers of the muon spectrometer

system to provide an additional measurement of muon momentum.
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Figure 4.6: Exploded view of the PDT and MDT detectors.

Figure 4.7: Exploded view of the scintillation trigger counters.
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4.2.4 Luminosity monitor

Instantaneous luminosity is determined using inelastic pp̄ collisions monitored by a

dedicated detector. The luminosity monitor (LM) consists of two discs of segmented

scintillation counters located at z = ±140 cm, between the SMT and endcap calorime-

ters (Fig. 4.8). The luminosity is determined by estimating the average number of

inelastic collisions per beam crossing [35]. The fundamental unit of time over which

luminosity is measured is the luminosity block (LB). Each LB is indexed by a unique

luminosity block number (LBN), incremented after 60 s or sooner by request from

the trigger or detector operation systems.

Figure 4.8: The DØ luminosity monitor.

4.2.5 Trigger

Collision events are delivered at a rate of about 1.7 MHz, but only those few events

with topologies consistent with scientifically interesting events are desired. The DØ

detector employs a three-level trigger system to monitor collision events and select

only those which pass specific acceptance requirements to be recorded for analy-

sis. Fig. 4.9 shows a schematic overview of the trigger and data acquisition systems.
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Events are selected by the Level 1 trigger based on coarse preliminary output from the

tracking, calorimeter, and muon systems using a combination of hardware, firmware,

and custom-built CPUs, passing events to the Level 2 trigger at a reduced rate of

approximately 2 kHz. The Level 2 trigger also employs a combination of hardware

and firmware to further filter events, based on event topology examined at a finer

detector granularity and including correlations across different subdetectors. Finally,

events are passed from the Level 2 trigger at a rate of about 1 kHz to the Level 3

trigger. These events are analyzed on a computing farm, where software algorithms

designed to perform a fast reconstruction of the entire event accept those with poten-

tial scientific interest at a rate of ≈100 Hz. These selected events are then recorded

for detailed analysis.

Figure 4.9: Overview of the DØ trigger and data acquisition systems.
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Chapter 5

Top Quark Event Selection at DØ

To search for the signature of Lorentz violation in the top quark sector we extend

the methods of the tt̄ cross section measurement performed by the DØ experiment

using data from Run II of the Fermilab Tevatron Collider [36]. This measurement was

made using events decaying via the semileptonic mode (tt̄→ `νbqq̄′b̄, where ` = e, µ).

We extend this analysis to search for signs of LV in this process by examining the

selected candidate tt̄ events as a function of sidereal time. The cross section analysis

is divided into separate measurements using events with final states consisting of

either a single electron accompanied by jets (“e+jets”) or a single muon accompanied

by jets (“µ+jets”). Reference [36] presents a detailed discussion of the cross section

measurement. In this chapter we present a brief summary of the methods used by

that analysis to select the events containing tt̄ pair candidates chosen for our study.
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5.1 Data set

The cross section measurement was performed using data collected with the DØ

detector during Run II of the Tevatron collider, corresponding to a total integrated

luminosity of 5.3±0.3fb−1. During 2006, partway through Run II, extensive upgrades

were made to the DØ detector [25]. The period before this upgrade is referred to as

Run IIa and the period afterward is Run IIb. Approximately 1 fb−1 of integrated lu-

minosity was collected and analyzed during Run IIa, yielding a value for the inclusive

tt̄ cross section σtt̄ of 7.62 ± 0.85 pb [37]. The data set was subsequently extended

by an additional ≈4.3 fb−1 of integrated luminosity during Run IIb. Using the data

from both Run IIa and Run IIb, the experiment refined the value for σtt̄ to 7.78+0.77
−0.64

pb, in agreement with the predictions of the Standard Model [36].

Trigger conditions were similar between the two periods. The primary trigger

requirement for the e+jets selection was the presence of either an electron or, in the

case of a low-pT electron, an electron accompanied by a jet. During Run IIa, events

were accepted into the µ+jets selection when the final state included a muon and

a jet. This latter requirement was relaxed during Run IIb, only requiring a single

muon. The full list of the applied trigger algorithms is reproduced from Ref. [38] in

Appendix A.

5.2 Event selection

Events recorded after the trigger selections undergo full reconstruction. Object-level

requirements refine the event selection to exclude events incompatible with a tt̄-like

topology while maintaining a low signal rejection. The primary vertex (PV) is re-
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quired to lie within 60 cm of the detector center along the z-axis, guaranteeing the

majority of tracks fall within the SMT acceptance. Reconstructed electrons, muons,

and jets are selected with requirements on their transverse momentum and pseudo-

rapidity. The missing transverse energy provides a measurement of the final-state

neutrino.

Jets are reconstructed using the “Run II cone” algorithm [39], where association of

neighboring calorimeter deposits is optimized to identify jets with a benchmark radius

R =
√

∆η2 + ∆φ2 = 0.5. From the set of all identified jets in the reconstructed event,

only those with transverse momentum pT > 20 GeV and pseudorapidity |η| < 2.5 are

considered. Candidate tt̄ events must contain more than one jet satisfying these

requirements, and the leading jet is additionally required to be reconstructed with

pT > 40 GeV.

Collisions delivered during Run IIb occurred with higher instantaneous luminos-

ity and typically contained multiple proton-antiproton interactions within the same

bunch crossing. To reject jets coming from these additional pp̄ interactions, jets se-

lected for consideration as part of the tt̄ final state in events from Run IIb are required

to contain at least 3 tracks from the PV.

Candidate events in the semileptonic decay modes must also contain a single

isolated lepton to pass acceptance. For the e+jets sample, the event must contain

only one isolated electron with pT > 20 GeV and |η| < 1.1 (the fiducial coverage of

the central calorimeter section). To be included in the µ+jets sample, there must be

only one isolated muon with pT > 20 GeV and |η| < 2.0. Events containing more

than one isolated lepton of either flavor with pT > 15 GeV are rejected.

Finally, the associated neutrino contributes to the missing transverse energy E/T
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of the event, with the requirements E/T > 20 GeV for the electron channel and E/T >

25 GeV for the muon channel.

The jets reconstructed in events containing a tt̄ pair include those coming from

the underlying b quarks. These jets often display key features that can be used to

differentiate them from jets evolved from lighter quarks (coming from the hadronically

decaying W boson) or from e.g. final-state gluon radiation. One such feature is the

presence of a secondary vertex displaced from the PV within the jet cone, owing to

the relatively long lifetime of the B mesons formed during hadronization of the b

quark. A neural network (NN) is trained to discriminate between b-jets and jets from

other quark flavors by combining a variety of input variables describing the secondary

vertex and its relationship to the PV and the rest of the tracks in the event [40]. The

“medium” b-tag working point was chosen, giving a single b-tag probability of around

0.46.

Because the event selection requirements and associated efficiencies are different

for e+jets events versus µ+jets events, these two channels are analyzed separately.

The data is also divided between Run IIa and Run IIb. Due to differences in back-

ground contributions discussed below, the data is further divided according to jet

multiplicity (2 jets, 3 jets, or >3 jets). Finally, it is useful to split the data into

additional subsamples according to the number of jets tagged as b-jet candidates (0,

1, or >1).

The full cross section analysis [36] distinguishes between events with “tight” lep-

ton requirements used for signal extraction and “loose” lepton requirements which

are dominated by background. To minimize contributions from background (non-tt̄)

events while retaining maximum statistics, we choose events with the “tight” lepton
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selection requirements and exactly 1 b-tagged jet. Tables 5.1 and 5.2 list the number

of events in each jet multiplicity which will be examined to search for a sidereal time

dependence resulting from violation of Lorentz invariance in the tt̄ event.

Table 5.1: Number of e+jets tt̄ candidates in the “tight” lepton selection with exactly
1 b-tagged jet.

2 jets 3 jets >3 jets
Run IIa 453 198 112
Run IIb 1590 648 289
Total 2048 846 401

Table 5.2: Number of µ+jets tt̄ candidates in the “tight” lepton selection with exactly
1 b-tagged jet.

2 jets 3 jets >3 jets
Run IIa 317 140 109
Run IIb 1139 426 236
Total 1456 566 345

5.3 Sample composition

A variety of physics processes can produce reconstructed event topologies that make

them indistinguishable from true tt̄ events. This results in a dilution of the signal

content in the selected event samples. The sensitivity to LV effects coupling to the

actual tt̄ events is subsequently reduced. In order to properly account for these

background contributions, we require an estimate of the composition of each of our

event selections in terms of the signal and various backgrounds.
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By far the largest physics background is from production of a W boson and asso-

ciated jets. These W+jets events dominate the background contribution to tt̄ events,

but other processes also contribute at a non-negligible level. Events consisting of

a Z boson and associated jets can contribute when, for example, the Z decays to

two leptons but only one is reconstructed within the detector. A tiny fraction of

the very large number of multijet events from basic QCD processes will contain a jet

which deposits most of its energy in the electromagnetic portion of the calorimeter,

thereby emulating the expected tt̄ topology. Small contributions also come from di-

boson events (WW , WZ, and ZZ) and single top quark production. Reference [36]

estimates the contribution from each of these sources of background using a variety of

Monte Carlo and data-based methods. We collect the relevant yields for our chosen

tt̄ event selections in Tables 5.3 and 5.4 as a function of the number of jets in the

event, and Fig. 5.1 illustrates the combined yields versus jet multiplicity.

Events from these various background processes are more likely to contain fewer

jets than true tt̄ events. Because of the low background content in the e+>3-jets

and µ+>3-jets samples, we choose these for our investigation of violation of Lorentz

invariance. The `+2-jets and `+3-jets samples consist mostly of background (princi-

pally W+jets) events and provide a useful cross-check.

67



5.3 Sample composition 5. Top Quark Event Selection at DØ

Table 5.3: Comparison of yields for e+n-jets channels for data in the 1 b-tag selection
to contributions expected from tt̄ signal and sources of background. Uncertainties
include statistical and systematic contributions.

n-jets n = 2 n = 3 n > 3
Sample Yield
W+jets 1360 ± 90 316 ± 26 55 ± 10
Multijet 197 ± 25 75 ± 8 23 ± 3
Z+jets 68 ± 15 26 ± 6 6 ± 2
Other 148 ± 19 41 ± 6 8 ± 1
tt̄ 265 ± 22 381 ± 30 322 ± 31

Total 2038 ± 97 839 ± 37 413 ± 25
Observed 2043 846 401

Table 5.4: Comparison of yields for µ+n-jets channels for data in the 1 b-tag selection
to contributions expected from tt̄ signal and sources of background. Uncertainties
include statistical and systematic contributions.

n-jets n = 2 n = 3 n > 3
Sample Yield
W+jets 1081 ± 69 261 ± 20 63 ± 8
Multijet 38 ± 24 14 ± 5 6 ± 2
Z+jets 68 ± 15 19 ± 5 4 ± 1
Other 118 ± 15 32 ± 4 7 ± 1
tt̄ 163 ± 14 262 ± 21 240 ± 22

Total 1468 ± 77 589 ± 28 318 ± 17
Observed 1456 566 345
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Figure 5.1: Jet multiplicity distribution for `+jets events with 1 b-tagged jet for
backgrounds and contributions from tt̄ signal (e+jets and µ+jets combined) [36].
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5.4 Event times

In order to estimate any dependence on sidereal time in the tt̄ event rate, our analysis

requires the time of production of each event selected as a tt̄ candidate by the criteria

outlined above. Times are recorded by the DØ trigger and data acquisition system

as the number of continuous seconds elapsed since the 00:00:00 coordinated universal

time (UTC) of January 1, 1970. The fundamental unit of time over which luminosity

is collected is the luminosity block (LB), corresponding to up to 60 s of delivered

collisions. We identify the beginning and end of the LB with which each event is

associated, and record the midpoint of this range as the time for the event. This pro-

cedure introduces an uncertainty of approximately ±30 s to the event time. Because

we are searching for a signal with a very specific period of one sidereal day (or one

half of a sidereal day), we maximize the sensitivity of our analysis by collecting the

events into 12 bins of sidereal phase (each corresponding to 2 sidereal hours). The

uncertainty of any individual event time is negligible compared to this bin width.

Fig. 5.2 presents the sidereally binned event rates for the e+>3-jet and µ+>3-jet

signal samples. The origin of the time coordinate has been shifted to coincide with

the vernal equinox of the year 2000.
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Figure 5.2: The number of tt̄ candidates versus sidereal phase for (a) e+>3-jets events
and (b) µ+>3-jets events. The uncertainties reflect the sample size.
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Chapter 6

Analysis at the DØ Experiment

The cross section for semileptonic tt̄ production and decay including Lorentz-violating

contributions from the SME to the top quark sector, Eq. (3.25), can be approximated

as the observed, time-averaged SM process cross section modulated by a time depen-

dent function: σobs

(
1 + fSME(t)

)
. The contribution from the SME can be written

as

fSME(t) =
(
(cL)µν + (cR)µν

)
Rµ
α(t)Rν

β(t)AαβP + (cL)µνR
µ
α(t)Rν

β(t)AαβF . (6.1)

The SME coefficients (cL)µν and (cR)µν are defined in the Sun-centered reference

frame. The matrices AαβP and AαβF represent averages over the event kinematics con-

tributing to the SME components of the ratio |M|2/PFF̄ , detailed in Eqs. (3.22)

and (3.23). It is most convenient to evaluate these terms in the reference frame of

the DØ detector and rotate them into the Sun-centered frame. This rotation, Rµ
α(t),

introduces the sidereal time dependence into the cross section.
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6.1 Kinematic terms

The summations in Eqs. (3.22) and (3.23) are carried out over those simulated tt̄

events which pass fiducial acceptance, trigger selection, and analysis requirements

on each reconstructed event. These criteria were discussed in the previous chapter,

and are utilized to generate a collection of simulated events with which to calculate

the elements of AαβP and AαβF . Because of differences in various efficiencies between

e+jets events and µ+jets events, we calculate these matrices for each decay channel

separately.

We generate two sets of Monte Carlo samples and simulate the response of the

DØ detector to each event. We have 121675 events in the e+jets sample and 138248

events in the µ+jets sample, providing ample statistics to minimize the uncertainty

on these terms. We plot the contributions from each of the events to these sums and

collect them in Appendix B. Calculating the average for each term, we find AαβP and

AαβF in the electron channel to be

AαβP =



0.218± 0.001 0.000±< 0.001 0.000±< 0.001 −0.003± 0.002

0.000±< 0.001 0.111±< 0.001 0.000±< 0.001 0.000± 0.001

0.000±< 0.001 0.000±< 0.001 0.111±< 0.001 0.000± 0.001

−0.003± 0.002 0.000±< 0.001 0.000±< 0.001 1.184± 0.001


,

(6.2)
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AαβF =



−8.075± 0.092 −0.010± 0.019 0.031± 0.023 0.042± 0.064

−0.010± 0.019 −0.323± 0.013 −0.003± 0.012 −0.023± 0.013

0.031± 0.023 −0.003± 0.012 −0.342± 0.015 −0.012± 0.017

0.042± 0.064 −0.023± 0.013 −0.012± 0.017 −2.126± 0.048


,

(6.3)

and in the muon channel to be

AαβP =



0.245± 0.001 0.000±< 0.001 0.000±< 0.001 0.000± 0.002

0.000±< 0.001 0.113±< 0.001 0.000±< 0.001 0.000± 0.001

0.000±< 0.001 0.000±< 0.001 0.112±< 0.001 0.000± 0.001

0.000± 0.002 0.000±< 0.001 0.000±< 0.001 1.200± 0.001


,

(6.4)

AαβF =



−8.570± 0.068 0.042± 0.022 −0.021± 0.022 −0.011± 0.037

0.042± 0.022 −0.421± 0.011 −0.002± 0.009 −0.019± 0.013

−0.021± 0.022 −0.002± 0.009 −0.358± 0.010 −0.006± 0.018

−0.011± 0.037 −0.019± 0.013 −0.006± 0.012 −2.489± 0.027


.

(6.5)

It is worth noting that these matrices are nearly diagonal and the Axx and Ayy

elements are effectively degenerate. The contributions to the off-diagonal elements

are evenly distributed about zero, as can be seen in Figs. B.1–B.4 in Appendix B.

The mathematical expressions for these terms, Eqs. (3.6)–(3.9), involve products of
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the form pµq1p
ν
q2

. These products tend to have an equal probability of being positive

and negative in the off-diagonal cases, while the on-diagonal contributions of the

form (pµ)2 tend to be positive. The difference between the shape of the AzzP term

compared to the tt, xx, and yy terms is likely due to a tendency for a small boost of

the tt̄ system along the beam direction in asymmetric initial state parton interactions.

The degeneracy of Axx and Ayy reflects the overall azimuthal symmetry of the DØ

detector.

While some of the distributions of the event-by-event contributions to these av-

erages are broad, it is the average which contributes to fSME(t). The quoted uncer-

tainties on the elements of these matrices are purely statistical, and represent the

uncertainty on the mean value of each term. For example, the standard deviation of

the term AαβP is

sd(AαβP ) = sd

(
1

nAcc

nAcc∑
k∈Acc

(
δP αβ

p

P
+
δP αβ

v

P

))

=
1

√
nAcc

sd

(
δP αβ

p

P
+
δP αβ

v

P

)
. (6.6)

6.2 Reference frame transformation

To determine the effects of the various SME coefficients, the matrices AαβP and AαβF

must be transformed into the Sun-centered reference frame. The relative velocity

of the two reference frames is negligible, so the transformation operation involves

only rotations. We extend the rotation matrices defined in Eqs. (1.3)–(1.5) to four

dimensions, yielding the following three transformations:
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R̃x(φ) =



1 0 0 0

0 1 0 0

0 0 cos(φ) − sin(φ)

0 0 sin(φ) cos(φ)


, (6.7)

R̃y(θ) =



1 0 0 0

0 cos(θ) 0 − sin(θ)

0 0 1 0

0 sin(θ) 0 cos(θ)


, (6.8)

R̃z(ψ) =



1 0 0 0

0 cos(ψ) sin(ψ) 0

0 − sin(ψ) cos(ψ) 0

0 0 0 1


. (6.9)

The DØ detector is located at the Fermilab accelerator facility, at a latitude of

40.175◦ N. The z-axis is defined to point along the direction of travel of the proton

beam, and the y-axis points vertically up. To relate this coordinate system to that

of the Sun-centered reference frame, two parameters are required. The colatitude (χ)

of the detector frame is the angle between the y-axis and the axis of Earth’s rotation

(the Z-axis); this is simply 90◦ minus the latitude, or 49.825◦. The orientation of the

proton beam (the z-axis) is approximately α = 42.192◦ south of west.

The transformation from the DØ frame to the Sun-centered frame is accomplished

through four successive rotations. The coordinate system is first rotated about the

detector y-axis by α, followed by a rotation about the x-direction by π/2. A second

76



6.3 Forms for fSME(t) 6. Analysis at the DØ Experiment

rotation about the y-axis by χ accounts for the latitude of the detector. A final

rotation about the Z-axis by ωt (where ω is related to the sidereal period Tside by

ω = 2π/Tside) introduces the sidereal time dependence. We have

R(t) = R̃z(ωt) R̃y(χ) R̃x(π/2) R̃y(α). (6.10)

Table 6.1 collects the constants of this rotation matrix: the colatitude (χ), orientation

of the DØ z-axis (α), and the origin of the time coordinate (t0) chosen to coincide

with the vernal equinox of the year 2000.

Table 6.1: Parameters defining the orientation of the DØ detector

Parameter Value
Colatitude (χ) 49.8255◦

D0 Rotation (α) 42.192◦

t0 953537400 s

6.3 Forms for fSME(t)

The SME is a phenomenological formalism within which the terms parametrizing

CPT and Lorentz violation are not constrained to couple with the same strength to

all particle species. Many of these have already been tightly constrained, as discussed

previously. We therefore impose the assumption that SME coefficients in all other

particle sectors are zero. In order to maximize our sensitivity to SME coefficients in

the top sector and set limits on their possible values, we estimate one component (µ, ν)

of each at a time. For example, to measure (cL)XX , we assume all other (cL)µν are
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zero, as well as all (cR)µν . Except for the case of interference effects between different

coefficients (which could lead to cancellation of observable effects on the total cross

section), this procedure yields the maximum allowed values for each. Aside from such

interference, if any of these assumptions were not fulfilled then the actual magnitude

of each coefficient would be smaller than the limit we extract.

This procedure gives four basic model assumptions under which we perform our

analysis: (cR)µν = 0, (cL)µν = 0, cµν = 0, and dµν = 0, where cµν and dµν are linear

combinations of (cR)µν and (cL)µν defined in Eq. (3.1). Propagating these assumptions

into Eq. (6.1), we have the possible forms for fSME(t) listed in Table 6.2.

Table 6.2: fSME(t) under different SME assumptions.

Assumption fSME(t)

(cR)µν = 0 (cL)µνR
µ
α(t)Rν

β(t)(AαβP + AαβF )

(cL)µν = 0 (cR)µνR
µ
α(t)Rν

β(t)(AαβP )

dµν = 0 cµνR
µ
α(t)Rν

β(t)(AαβP + 1
2
AαβF )

cµν = 0 dµνR
µ
α(t)Rν

β(t)(1
2
AαβF )

The SME contribution to the cross section has the general form

fSME(t) = CµνR
µ
α(t)Rν

β(t)Aαβ, (6.11)

where Cµν represents the coefficient we wish to measure under each model assump-

tion and Aαβ represents the corresponding linear combination of AαβP and AαβF . The

matrices (cL)µν and (cR)µν are symmetric and traceless.

The expression for fSME(t) can be simplified by noting that the matrices in

Eqs. (6.2)–(6.5) are essentially diagonal, and the elements Axx and Ayy nearly de-

generate. A slight asymmetry in the acceptance of the muon spectrometer leads to
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the difference between these two terms in Eq. (6.5), but the effect on fSME(t) from

their difference is negligible. We take Axx to be the average of these elements, and

Eq. (6.1) simplifies to

fSME(t) = Cµν
[
Rµ
t (t)Rν

t (t)A
tt +

(
Rµ
x(t)Rν

x(t) +Rµ
y (t)Rν

y(t)
)
Axx +Rµ

z (t)Rν
z(t)A

zz
]
.

(6.12)

We perform the multiplications in Eq. (6.12) to determine the explicit form of fSME(t)

for each µ, ν case.

For SME coefficients of the form CTT , Eq. (6.12) yields

f
(TT )
SME (t) = CTTA

tt = constant. (6.13)

The TT components of (cL)µν and (cR)µν contribute only to the total cross section,

and do not produce a time dependent signature. Similarly, for the ZZ coefficients

f
(ZZ)
SME (t) = CZZ

((
sin2(χ) cos2(α) + cos2(χ)

)
Axx + sin2(χ) sin2(α)Azz

)
= constant

(6.14)

only effects the average cross section. We do not attempt to measure these coefficients

in this analysis.

The negligible contribution to the rotation matrix Rµ
α(t) due to the velocity of the

detector frame relative to the Sun-centered frame means the Ri
t(t) components (where

i = X, Y, Z) and the RT
i (t) components (i = x, y, z) are effectively zero. Together

with the vanishing off-diagonal elements of AαβP and AαβF , this gives
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f
(T i)
SME(t) ≈ CT i × 0, i = X, Y, Z. (6.15)

We therefore do not expect this analysis to be sensitive to the TX, TY , or TZ

elements of (cL)µν and (cR)µν .

While we cannot measure either the ZZ components or the coefficients involving

the T component in this analysis, the remaining components will couple to a time

dependent oscillation in the tt̄ cross section. For the coefficient CXX , we find

f
(XX)
SME (t) = CXX

(
b1 cos2(ωt) + b2 sin2(ωt) + 2b3 sin(ωt) cos(ωt)

)
= CXX

(
b1 + b2

2
+
b1 − b2

2
cos(2ωt) + b3 sin(2ωt)

)
, (6.16)

and for CY Y

f
(Y Y )
SME (t) = CY Y

(
b1 sin2(ωt) + b2 cos2(ωt)− 2b3 sin(ωt) cos(ωt)

)
= CY Y

(
b1 + b2

2
− b1 − b2

2
cos(2ωt)− b3 sin(2ωt)

)
. (6.17)

The terms b1, b2, and b3 depend on the colatitude and orientation of the detector, as

well as the elements Axx and Azz.

b1 =
(
cos2(χ) cos2(α) + sin2(χ)

)
Axx + cos2(χ) sin2(α)Azz, (6.18)

b2 = sin2(α)Axx + cos2(α)Azz, (6.19)

b3 = cos(χ) sin(α) cos(α) (Azz − Axx) . (6.20)

Because the analysis is not sensitive to the CTT and CZZ elements, those terms will
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be zero in each expression for fSME(t) used to determine CXX and CY Y . To satisfy the

requirement that the matrix of coefficients Cµν be traceless, we choose CY Y = −CXX .

Combining Eqs. (6.16) and (6.17), the constant contributions cancel and we have

f
(XX)
SME (t) = 2CXX

(
b1 − b2

2
cos(2ωt)− b3 sin(2ωt)

)
. (6.21)

The function fSME(t) has a similar form for the coefficient CXY , with the symmetry

condition CY X = CXY .

f
(XY )
SME (t) = 2CXY

(
b1 − b2

2
sin(2ωt)− b3 cos(2ωt)

)
. (6.22)

Eq. (6.22) is the same as Eq. (6.21) under a shift in phase of the sidereal signal

ωt → ωt + π/4, indicating that we can expect similar sensitivity to the two cases.

These coefficients give rise to a signal that varies twice with the sidereal day.

The final SME coefficients to consider are CXZ and CY Z . With the appropriate

symmetry requirements, the expressions for the modulation of the event rate are

f
(XZ)
SME (t) = 2CXZ (b4 cos(ωt) + b5 sin(ωt)) (6.23)

and

f
(Y Z)
SME (t) = 2CY Z (b4 sin(ωt)− b5 cos(ωt)) , (6.24)

respectively, with
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b4 = sin(χ) cos(χ) sin2(α) (Axx + Azz) , (6.25)

b5 = sin(χ) sin(α) cos(α) (Axx − Azz) . (6.26)

The expressions in Eqs. (6.23) and (6.24) vary once per sidereal day, and differ in

sidereal phase by π/2.

Equations (6.21)–(6.24) describe the expected modulation of the tt̄ cross section

due to the Lorentz violating contributions of the SME.

6.4 Expected event rate

The experiment directly measures the production rate of semileptonic tt̄ events. The

total number of tt̄ events (Ntt̄) collected during a period of data collection (τ) is

Ntt̄ =

∫
τ

L(t)σ(t) dt, (6.27)

where L(t) is the instantaneous luminosity. The rate of tt̄ events is therefore

dNtt̄

dt
= L(t)σ(t). (6.28)

Because our analysis is only sensitive to SME coefficients of the form CXX , CXY ,

CXZ , and CY Z , the time dependent cross section has the general form

σ(t) = σave (1 + fSME(t)) , (6.29)

where σave is the observed time-averaged cross section and fSME(t) takes on one of

the forms described in Eqs. (6.21)–(6.24) to give rise to a periodic modulation about
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this average. We define this average cross section in terms of the total number of tt̄

events and the integrated luminosity, Lint, and express the event rate as

dNtt̄

dt
≈ Ntt̄

L(t)

Lint

(1 + fSME(t)) . (6.30)

Eq. (6.30) describes the rate of tt̄ events, but there is a non-negligible contam-

ination in the observed rate due to irreducible background events. These events,

principally from the W+jets process, are kinematically similar to true tt̄ events and

cannot be distinguished from them. We therefore must consider their contribution

to the total number of observed tt̄ candidate events, Ntot. Because we assume any

Lorentz violation due to SME effects belongs solely to the top quark sector, we ex-

pect the background (non-tt̄) event rate to depend only on fluctuations in the relative

instantaneous luminosity.

dNB

dt
= NB

L(t)

Lint

= (1− fS)Ntot
L(t)

Lint

, (6.31)

where the signal fraction fS is the relative number of true tt̄ events estimated in the

data set, such that Ntt̄ = fSNtot.

Combining the contributions from signal (tt̄) and background (non-tt̄) events, we

find that

dNtot

dt
≈ Ntot

L(t)

Lint

(1 + fSfSME(t)) . (6.32)

To maximize our sensitivity in a search for a signal varying periodically with
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sidereal time, we fold the data into twelve bins of sidereal phase (corresponding to

two sidereal hours each). An event’s sidereal phase is the fraction of the sidereal day

corresponding to the time at which the event occurred, with φ(t) = φ(t+nTside). The

number of events Ni in a bin of sidereal phase is

Ni ≈ Ntot
Li
Lint

(1 + fSfSME(φi)) , (6.33)

where Li is the luminosity integrated over the appropriate bin whose center corre-

sponds to sidereal phase φi.

Fig. 6.1 shows the relative luminosity Li/Lint in each bin of sidereal phase. Slight

differences in trigger requirements for the e+jets and µ+jets selections give slight

differences in this distribution for the two samples.
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Figure 6.1: The relative luminosity Li/Lint by sidereal phase corresponding to (a) the
e+jets event selection and (b) the µ+jets event selection.

To directly compare the expectation for the sidereal time dependence fSME(φ) as

described in Eqs. (6.21)–(6.24) to our data, we define the variable R as
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Ri ≡
1

fS

(
Ni/Ntot

Li/Lint

− 1

)
. (6.34)

This distribution is the luminosity-corrected relative event rate versus sidereal phase.

In the absence of any periodic time dependence, this distribution should be flat and

distributed around R = 0. A sidereal time dependence of the tt̄ event rate would

produce a sinusoidal variation in this distribution. Fig. 6.2 shows the resulting distri-

butions for R versus sidereal phase for the e+jets and µ+jets signal samples. We use

a χ-square minimization method to compare our model fSME(φi) to each Ri in order

to extract the value of the SME coefficient under each assumption in Table 6.2.
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Figure 6.2: The dependence of R on sidereal phase for (a) e+>3-jets tt̄ candidates
and (b) the µ+>3-jets tt̄ candidates.
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6.5 Studies of Monte Carlo ensembles

Before proceeding to measure the top sector SME coefficients, we ensure consistency

of the analysis method by performing a series of fits using a large number of pseudo-

experiments generated using standard Monte Carlo techniques. For each fit, we gen-

erate an ensemble of events comparable to that in our data set, impose a sidereal

time dependence on the event rate, and extract the amplitude of sidereal oscillation

in the corresponding R distribution.

We use a rejection sampling technique to generate timestamps randomly dis-

tributed according to the expectation 1 + fSME(t). This time dependence is modeled

corresponding to the case where (cL)XX = 0.4, (cL)µν = 0 for all other values of µ

and ν, and all components of (cR)µν = 0. We continue sampling until 401 event times

have been selected, corresponding to the number of events in the e+>3-jets sample.

The analysis is then performed to extract the value of (cL)XX and this is compared

to its input value. The entire process is repeated until a total of 10,000 experiments

have been simulated.

Fig. 6.3a shows the distribution of value for (cL)XX extracted from each ensemble,

fit with a Gaussian function. The mean is near the input value of 0.4, and the width

of ≈0.17 gives an indication of the expected statistical uncertainty for this search.

The corresponding pull distribution (pull = ((cL)XX−0.4)/sd, Fig. 6.3b) has an RMS

near the expected value of unity. Each fit is performed using a χ-square minimization

method. An estimation of the quality of each fit is determined by calculating the

probability of obtaining a χ2-value greater than that obtained from the fit. Fig. 6.3c

collects these probabilities for each ensemble. With 10 degrees of freedom in the

fit (12 bins minus one degree for the fixed normalization and one for the extracted
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SME coefficient controlling the amplitude), the flat shape of this distribution reflects

statistically consistent behavior of the fit method.
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Figure 6.3: Parameters extracted from studies of 10,000 MC pseudo-experiments,
each containing 401 events with an input value of (cL)XX = 0.4: (a) values of (cL)XX ,
(b) the pull=((cL)XX − 0.4)/sd, and (c) the probability of the χ2 of the fit for each
pseudo-experiment.

Both the statistically-significant difference in the mean of the extracted (cL)XX in

Fig. 6.3a and the non-zero mean in the pull distribution of Fig. 6.3b indicate that the

fit method appears to contain a small bias introduced by the finite sidereal bin size.
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We investigate this effect by considering the results described above for various other

values of (cL)XX and with sidereal phase divided into 12, 24, and 36 bins. Fig. 6.4

collects the results of this investigation. The fit behaves linearly (Fig. 6.4a) and the

RMS of the pull distribution is consistently near unity (Fig. 6.4b) with respect to the

input value for each choice of binning granularity.
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Figure 6.4: Dependence of (a) the mean extracted value of (cL)XX , (b) the mean of
the pull distribution, and (c) the RMS of the pull distribution on the input value of
(cL)XX for different values of sidereal binning: 12 bins (black), 24 bins (red), and 36
bins (blue).
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The mean of the pull distribution exhibits a dependence on the input value of

the SME coefficient. The fact that this effect is enhanced by coarser sidereal binning

indicates that this is indeed the source of the observed bias. The integrated luminosity

is only available to this analysis accumulated into 12 bins of sidereal phase, so we

calculate and apply a correction to the extracted SME parameter. This correction

has the form

Cµν = fcorrC
fit
µν , (6.35)

where we calculate fcorr ≈ 1.012 for the case of a sinusoidal function varying with

sidereal frequency (i.e. fits to extract coefficients of the form CXZ and CY Z), and

fcorr ≈ 1.047 for the case of a sinusoidal function which varies with twice the sidereal

frequency (i.e. CXX and CY Y ). Finally, the limited size of the collection of ensembles

leads to a small shift of approximately -0.02 standard deviations in the pull distri-

butions for an input value of 0.0, but this shift approaches zero as the number of

pseudo-experiments is increased.

We conclude that the analysis method is statistically consistent and behaves lin-

early with respect to the SME coefficients as expected. The correction described in

Eq. (6.35) is sufficient to account for the small bias introduced by the choice to fold

the data into 12 bins of sidereal phase, and we present the corrected values in all

subsequent tables.
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6.6 Amplitude of sidereal dependence

The function fSME(φ) can be expressed in the form A cos(nφ + θ), where n = 2 for

the cases with SME coefficients of the form CXX and CY Y while n = 1 for the cases

CXZ and CY Z . The amplitude and phase of this cosine function can be derived from

Eqs. (6.21)–(6.24). The phase is fixed by the appropriate combination of the b-terms

defined in Eqs. (6.18)–(6.20) and Eqs. (6.25)–(6.26). We fix the phase appropriate

to each assumption in Table 6.2 and extract the amplitude of the resulting cosine

function in order to determine the significance of any sidereal time dependence in the

sidereally folded event rate. Tables 6.3–6.10 present these amplitudes under each of

the sixteen model assumptions. We find that the amplitude of sidereal time depen-

dence in the `+>3-jets data is consistent with zero within two standard deviations

under all model assumptions in both lepton channels. We then fit Eqs. (6.21)–(6.24)

to the R distributions to directly extract values of SME coefficients. These are pre-

sented in Section 6.9 with both statistical and systematic uncertainties.

90



6.6 Amplitude of sidereal dependence 6. Analysis at the DØ Experiment

6.6.1 Electron amplitude results

Table 6.3: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0653± 0.0736 0.887
XY -0.0465± 0.0741 0.626
XZ 0.1022± 0.0707 1.45
Y Z 0.0153± 0.0722 0.213

Table 6.4: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0653± 0.0736 0.887
XY 0.0465± 0.0741 0.626
XZ -0.1004± 0.0710 1.41
Y Z -0.0300± 0.0718 0.418

Table 6.5: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0653± 0.0736 0.887
XY 0.0465± 0.0741 0.626
XZ -0.0837± 0.0722 1.16
Y Z -0.0654± 0.0706 0.925

Table 6.6: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0653± 0.0736 0.887
XY -0.0465± 0.0741 0.626
XZ 0.1012± 0.0709 1.43
Y Z 0.0238± 0.0720 0.33
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6.6.2 Muon amplitude results

Table 6.7: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0503± 0.0794 0.634
XY 0.0023± 0.0799 0.0288
XZ 0.1008± 0.0762 1.32
Y Z -0.0572± 0.0777 0.735

Table 6.8: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0503± 0.0794 0.634
XY -0.0023± 0.0799 0.0288
XZ -0.1073± 0.0766 1.41
Y Z 0.0436± 0.0774 0.563

Table 6.9: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0503± 0.0794 0.634
XY -0.0023± 0.0799 0.0288
XZ -0.0270± 0.0769 0.351
Y Z -0.1144± 0.0770 1.48

Table 6.10: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0503± 0.0794 0.634
XY 0.0023± 0.0799 0.0288
XZ 0.1042± 0.0764 1.37
Y Z -0.0505± 0.0776 0.651
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6.7 Systematic uncertainties

We expect a statistical uncertainty of around 0.17 on the magnitude of the SME

coefficients for the 401 events in the e+>3-jet sample, and slightly larger for the 345-

event muon sample. Although this uncertainty will dominate our results, systematic

factors can contribute as well.

The estimated fraction of events in the data which are true tt̄ events is the dom-

inant contribution to the systematic uncertainty on our extraction of the SME coef-

ficients from the oscillation amplitudes. We determine the relevant signal fractions

(fS) and their uncertainties from the results of the tt̄ cross section analysis described

in Reference [36], and treat these uncertainties as systematics in this study. The back-

ground from single top quark events could exhibit a sidereal time dependence due to

SME effects. However, the phenomenological framework we employ does not describe

single top production, and the relative contribution of single top events to the tt̄ data

is negligible (≈1%). Table 6.11 lists the signal fractions for the two `+>3-jet data

samples.

Table 6.11: Signal fractions fS for `+>3-jets tt̄ candidates.

Constant Value ± Uncertainty
fS (e+>3-jets) 0.780 ± 0.122
fS (µ+>3-jets) 0.755 ± 0.110

While the statistical uncertainties on the diagonal elements of AαβP and AαβF ,

Eqs. (6.2)–(6.5), are negligible compared to the statistical uncertainty due to the

sizes of the data sets, these elements are subject to the same systematic effects as the

event selection. We consider three leading sources of systematic uncertainty in our
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measurement of the kinematics of tt̄ events: the jet energy scale (JES), jet energy

resolution (JER), and jet identification (JETID). These factors have been identified

as the primary sources affecting the distributions of momenta reconstructed in the

detector [36]. We shift each of these factors up and down by one standard deviation

in our Monte Carlo samples used to calculate AαβP and AαβF for each of the lepton

channels and recalculate the elements. The effects of changing each of these sources

on the diagonal elements of AαβP and AαβF are given in Appendix C.

As discussed previously, the xx and yy elements of AαβP and AαβF are nearly de-

generate. This reflects the symmetry of the detector’s x- and y-axes. We therefore

average the xx and yy elements calculated from the simulated event samples and take

these as the values of AxxP and AxxF to be used in Eq. (6.12) to calculate the forms of

fSME(t). This procedure also minimizes the effects of a slight azimuthal asymmetry

in the detector’s muon acceptance, which is apparent in the xx and yy elements of

AαβF calculated from the µ+jets simulation.

Table 6.12: A-matrix elements for e+jets

Element Value± (Stat.+Sys.)
(AP )XX 0.1110± 0.0011
(AP )ZZ 1.1841± 0.0012
(AF )XX -0.3323± 0.0200
(AF )ZZ -2.1259± 0.0509

Tables 6.12 and 6.13 list the central values and combined uncertainties on the four

elements of AαβP and AαβF which ultimately contribute to the forms of fSME(t) used

in this analysis. Although systematic effects like JES contribute to the distribution

of components of reconstructed four-momenta in the detector, the elements of AαβP
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Table 6.13: A-matrix elements for µ+jets

Element Value± (Stat.+Sys.)
(AP )XX 0.1122± 0.0009
(AP )ZZ 1.1995± 0.0014
(AF )XX -0.3896± 0.0173
(AF )ZZ -2.4885± 0.0300

and AαβF reflect only averages of these components over the detector acceptance.

Such averages are not very sensitive to changes in these kinematic parameters at

magnitudes appropriate to DØ detector performance. Thus, the relative uncertainty

on elements of AαβP and AαβF is comparable to the statistical uncertainty on those

elements, and can be neglected when compared to the systematic uncertainty on the

signal fractions fS.

Finally, the coordinates of the DØ detector necessary to calculate fSME(t) (col-

lected in Table 6.1) carry negligible uncertainties.

6.8 Cross-checks

The efficiency to trigger and reconstruct a tt̄ candidate event could potentially change

with time. Our analysis must confirm that such effects do not contribute to the

sidereally-binned tt̄ event rate. Effects that cause time dependent efficiencies could

take the form of either random changes or periodic modulation. Over a long period of

time, any random changes in efficiency will contribute with equal likelihood to each

bin of sidereal phase and will therefore not contribute to any periodic modulation

of this distribution. Alternatively, various environmental factors like temperature

variations between day and night could potentially introduce a periodic effect in
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the event selection efficiency. We test for such time dependence contributing to the

sidereally-folded event rate by examining tt̄ candidates in exclusive event selection of

different jet multiplicities.

6.8.1 Background-enhanced samples

We test for sidereal time dependence in the R distributions of the lepton+n-jets

channels, where n = 2 or 3 and the lepton is either an electron or a muon. We generate

R distributions for each of these four cross-check channels with the same approach

used for the signal channels. The tt̄ signal fractions for each of these selections are

collected in Table 6.14.

Table 6.14: tt̄ fractions for the `+n-jets samples, n = 2, 3.

Constant Value
fS (e+2-jets) 0.130 ± 0.017
fS (µ+2-jets) 0.111 ± 0.015
fS (e+3-jets) 0.454 ± 0.056
fS (µ+3-jets) 0.445 ± 0.057

Events in these cross-check channels consist mostly of non-tt̄ events, principally

from irreducible W+jets events in which we expect no sidereal effects from LV. Such

events are topologically similar to the signal tt̄ events, exhibiting comparable kine-

matic distributions, and are subject to the same trigger, acceptance, and selection

efficiencies as true tt̄ events. We have imposed the assumption that all SME coeffi-

cients outside the top sector are zero; nonetheless any hypothetical Lorentz-violating

contributions from W+jets events would have to exactly cancel any sidereal depen-

dence from detector effects to invalidate our conclusions. As this situation is quite
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unlikely, these low-signal `+2-jets and `+3-jets event selections therefore provide a

handle on detector efficiencies that could effect our measurement in the signal `+>3-

jets channels.

We extract the amplitudes for any time dependent oscillations in the R distribu-

tions, corresponding to the same parametrizations used in Tables 6.3–6.10, and the

results of these fits are presented in Appendix D. We test the hypothesis that the

fitted amplitudes arise from statistical fluctuations by calculating the χ2 probability

for consistency of the 4 independently measured amplitudes with the assumption of

no sidereal dependence (Table D.17). For each model assumption, the ensemble of fits

is consistent with no time dependence in the R distribution at levels of probability in

the range 6%–38%.

While the four cross-check channels taken together provide satisfactory evidence

that there are no contributions to the sidereal event rate from detector effects, the

e+2-jets data alone exhibit some deviation from no sidereal time dependence in some

of the fits. For example, a fit of a cosine function with phase appropriate to the

model assumption dµν = 0 for the case cY Z = −cZY yields an amplitude that is 2.8

sd from zero. This measurement is close to the 3 sd threshold generally accepted as

an indication of an effect not attributable to a statistical fluctuation.

To thoroughly investigate the source of the apparent effect in the e+2-jets sample,

we divide our data into periods corresponding to Run IIa (the first ≈1 fb−1 of data)

and Run IIb (the latter ≈4.3 fb−1 of data). Significant improvements to the DØ

detector were made between these periods, making it the leading order transition

point for any possible changes in data quality which could have introduced or resolved

uncertainties in detector efficiencies.
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We present the results of this Run IIa/Run IIb separation in Appendix E and find

that the largest deviations from a null result of the fitted amplitudes occur in the Run

IIa e+n-jets samples. We again test the hypothesis that the fitted deviations arise

from statistical fluctuations, calculating the consistency with no sidereal dependence

of all 12 independently measured amplitudes (`+2-jets, `+3-jets, and `+>3-jets, for

` = e, µ in Run IIa and Run IIb). As shown in Table E.49, these χ2 probabilities lie in

the range 0.7%–35%. The hypothesis of a statisical origin for the observed deviations

is not badly disfavored. In the absence of any compelling evidence of problems with

the Run IIa e+jets sample, we therefore conclude that the results of these cross-checks

give no conclusive indication of the presence of a time dependent efficiency that would

affect our measurements of the SME coefficients governing LV in the top sector.

6.8.2 Binning effects

Any residual non-sidereal time dependence is greatly suppressed by folding the data

set into twelve bins of sidereal phase. The magnitude of any residual contribution

to this folded distribution depends inversely on the difference between the period of

such a time dependent efficiency and the sidereal period. Most problematic would

be an unexpected time dependent effect with a period close to that of a sidereal day.

The worst realistic case would be a modulation of the detector efficiency that varies

with a 24 hour period, such as a day-to-night temperature variation or similar effect.

However, because the data set spans approximately seven years, any contributions

from such an effect would be suppressed by a factor of about 10. To affect our

measurements, the DØ detector would have to have experienced a highly unlikely

periodic variation of the efficiency by approximately 75% over 24 hours. No periodic
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effects of this magnitude have ever been observed in the detection efficiencies for

reconstructed objects considered in this analysis.

6.9 Measured SME coefficients

Confident that there are no time dependent efficiencies that will affect our results,

we proceed to extract the values of the SME coefficients parametrizing LV in the

top sector from the e+>3-jet and µ+>3-jet tt̄ event selections. We present these

coefficients under each model assumption, along with their statistical and systematic

uncertainties and the statistical quality of the fit, in Tables 6.15–6.22. The corre-

sponding plots for the electron and muon samples are collected in Appendices F.1

and F.2, respectively.

The SME coefficients parametrizing LV in the top sector are independent of the

flavor of the lepton from the W boson in the top quark or antitop quark decay. To

maximize our sensitivity, we perform a simultaneous fit to both the e+>3-jets and

µ+>3-jets data sets to extract our final measurements of these SME coefficients.

Tables 6.23–6.26 collect the results of these simultaneous fits, with corresponding

plots presented in Appendix F.3.

The only non-negligible systematic uncertainty arises from the signal fraction fS

for each sample. This parameter is varied by ±1 sd, and the resulting variations in

the central values of the fit results determine the systematic uncertainty on the SME

coefficients.
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6.9.1 Electron sample results

Table 6.15: (cL)µν extracted from e+jets tt̄ candidates, assuming (cR)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cL)XX -0.158± 0.178± 0.025 13.5/10
(cL)XY -0.112± 0.179± 0.018 13.9/10
(cL)XZ 0.174± 0.120± 0.028 12.2/10
(cL)Y Z 0.026± 0.122± 0.004 14.3/10

Table 6.16: (cR)µν extracted from e+jets tt̄ candidates, assuming (cL)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cR)XX 0.106± 0.119± 0.017 13.5/10
(cR)XY 0.075± 0.120± 0.012 13.9/10
(cR)XZ -0.129± 0.091± 0.021 12.3/10
(cR)Y Z -0.038± 0.092± 0.006 14.1/10

Table 6.17: cµν extracted from e+jets tt̄ candidates, assuming dµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
cXX 0.645± 0.727± 0.103 13.5/10
cXY 0.459± 0.732± 0.073 13.9/10
cXZ -0.781± 0.674± 0.125 13/10
cY Z -0.610± 0.660± 0.098 13.4/10

Table 6.18: dµν extracted from e+jets tt̄ candidates, assuming cµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
dXX -0.127± 0.142± 0.020 13.5/10
dXY -0.090± 0.143± 0.014 13.9/10
dXZ 0.149± 0.104± 0.024 12.3/10
dY Z 0.035± 0.105± 0.006 14.2/10
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6.9.2 Muon sample results

Table 6.19: (cL)µν extracted from µ+jets tt̄ candidates, assuming (cR)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cL)XX -0.089± 0.141± 0.013 5.32/10
(cL)XY 0.004± 0.142± 0.001 5.72/10
(cL)XZ 0.129± 0.097± 0.019 3.98/10
(cL)Y Z -0.073± 0.099± 0.011 5.18/10

Table 6.20: (cR)µν extracted from µ+jets tt̄ candidates, assuming (cL)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cR)XX 0.083± 0.131± 0.012 5.32/10
(cR)XY -0.004± 0.132± 0.001 5.72/10
(cR)XZ -0.141± 0.100± 0.021 3.75/10
(cR)Y Z 0.057± 0.101± 0.008 5.41/10

Table 6.21: cµν extracted from µ+jets tt̄ candidates, assuming dµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
cXX 2.387± 3.769± 0.356 5.32/10
cXY -0.110± 3.801± 0.016 5.72/10
cXZ -0.563± 1.599± 0.084 5.6/10
cY Z -2.378± 1.609± 0.354 3.53/10

Table 6.22: dµν extracted from µ+jets tt̄ candidates, assuming cµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
dXX -0.086± 0.136± 0.013 5.32/10
dXY 0.004± 0.137± 0.001 5.72/10
dXZ 0.136± 0.099± 0.020 3.86/10
dY Z -0.065± 0.100± 0.010 5.3/10
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6.9.3 Simultaneous fit results

Table 6.23: (cL)µν extracted from simultaneous fits to e+jets and µ+jets tt̄ candidates,
assuming (cR)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cL)XX -0.116± 0.111± 0.018 18.9/21
(cL)XY -0.041± 0.111± 0.006 19.9/21
(cL)XZ 0.147± 0.076± 0.022 16.3/21
(cL)Y Z -0.034± 0.077± 0.005 19.8/21

Table 6.24: (cR)µν extracted from simultaneous fits to e+jets and µ+jets tt̄ candidates,
assuming (cL)µν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
(cR)XX 0.096± 0.088± 0.015 18.9/21
(cR)XY 0.039± 0.089± 0.006 19.8/21
(cR)XZ -0.135± 0.068± 0.021 16.1/21
(cR)Y Z 0.005± 0.068± 0.001 20/21

Table 6.25: cµν extracted from simultaneous fits to e+jets and µ+jets tt̄ candidates,
assuming dµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
cXX 0.707± 0.713± 0.114 19/21
cXY 0.438± 0.719± 0.070 19.7/21
cXZ -0.749± 0.621± 0.118 18.6/21
cY Z -0.865± 0.610± 0.140 18/21

Table 6.26: dµν extracted from simultaneous fits to e+jets and µ+jets tt̄ candidates,
assuming cµν = 0.

Coefficient Value± Stat. ± Sys. χ2/nDoF
dXX -0.106± 0.099± 0.016 18.9/21
dXY -0.041± 0.099± 0.006 19.9/21
dXZ 0.142± 0.072± 0.022 16.1/21
dY Z -0.018± 0.073± 0.003 20/21
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Chapter 7

Prospective Analysis at the

ATLAS Experiment

As one of the general purpose particle detectors located at the Large Hadron Collider

(LHC), the ATLAS detector has already surpassed the DØ experiment in the volume

of tt̄ events collected and analyzed. The LHC delivered proton-proton collisions with

energies
√
s = 7 TeV during 2011, followed by an increase to

√
s = 8 TeV beginning in

2012. Consequently, the production cross section for tt̄ pairs is significantly higher at

ATLAS than at DØ. (For example, σtt̄ = 177+11
−10 pb in pp collisions at

√
s = 7 TeV [41]

versus σtt̄ = 7.78+0.77
−0.64 pb in pp̄ collisions at

√
s = 1.98 TeV [36]). A measurement of

Lorentz violation in the top sector using the ATLAS detector will be less constrained

by statistical uncertainties and provide better limits on the relevant SME coefficients

than those determined with the DØ experiment.

Because the contribution to this analysis at ATLAS from statistical uncertainty is

smaller than that experienced with the DØ study, systematic uncertainties may play a
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more prominent role. There are also several differences between conditions at ATLAS

versus DØ that must be considered. The distributions of parton momenta associated

with the final state particles from a tt̄ event reconstructed in the ATLAS detector will

differ due to the higher center of mass energy of the collisions, potentially affecting

elements of the AαβP and AαβF matrices. This would provide a different contribution to

the amplitude of any LV-induced sidereal time dependence and affect the sensitivity

to SME coefficients. Furthermore, as of 2012 the ATLAS data taking period only

spans a range of about two years, potentially giving a smaller suppression of any

24-hour periodic effects on the sidereally folded event rate.

We present a discussion of this analysis as it might be performed using data

collected by the ATLAS experiment. We consider the qualitative and quantitative

differences between tt̄ events at the two experiments, and develop an expectation

for the limits on the top-sector SME parameters (cL)µν and (cR)µν that could be

determined from ATLAS data. We also propose an alternate analysis that could

further improve on these expectations by utilizing more detailed luminosity data

than was available to the DØ analysis.

7.1 The ATLAS detector

The ATLAS detector [42] (A Toroidal LHC ApparatuS) is a particle detector designed

to study the products of proton-proton collisions delivered by the Large Hadron Col-

lider (LHC). It is the result of the collaborative effort of roughly 3,000 scientists and

engineers from more than 170 institutions across almost 40 countries. Similar to DØ,

ATLAS consists of several layers of sophisticated tracking and calorimetric sensors
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arrayed in a cylindrical geometry around the pp interaction point. Figure 7.1 shows

a cut-away view of the ATLAS detector, with the major subsystems labeled.

Figure 7.1: The ATLAS detector and its major subsystems. Several technicians
next to the detector give a sense of the immense scale of the apparatus. (ATLAS
Experiment c© 2012 CERN)

7.1.1 Large Hadron Collider

The collisions which the ATLAS experiment investigates begin with the acceleration

of protons through a chain of synchrotrons at the CERN laboratory. Figure 7.2 shows

the various accelerator stages at CERN. Protons collided in the LHC begin at LINAC

2 (LINAC 3 provides Pb ions for heavy ion collisions at the LHC), are accelerated by

the Proton Synchrotron Booster (PSB, or “Booster”) to 1.4 GeV, and passed to the
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Proton Synchrotron (PS) to reach 26 GeV. These accelerated protons are then injected

into the Super Proton Synchrotron (SPS). This accelerator has been the workhorse

of many experiments since 1976, including its use as the source of pp̄ collisions to the

UA1 and UA2 experiments where the W and Z bosons were discovered. The SPS

accelerates protons from the PS to 450 GeV for injection into the LHC.

Figure 7.2: The accelerator complex at CERN, including the stages leading to the
LHC. Various accelerators are labeled, along with their size and the year they were
installed. The figure is not to scale. ( c© 2008 CERN)

The Large Hadron Collider itself is 27 km in circumference and occupies a tunnel
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built approximately 100 m underground originally used to house the Large Electron-

Positron Collider (LEP). The LHC was designed to accelerate two counter-circulating

beams of protons to a design energy of 7 TeV each with a design luminosity of 1034

cm−2s−1. A series of 1232 dipole and 392 quadrupole NbTi superconducting magnets,

cooled to approximately 1.9 K with liquid helium, steer and focus the beams for

collisions at four interaction points along the ring. In September 2008 an electrical

fault damaged several of the magnets and has forced the LHC to operate below

design energy. From March 2010 until the end of 2011, the LHC operated with 3.5

TeV beams. This energy has been increased by 0.5 TeV for collisions at
√
s = 8 TeV

during the 2012 data taking period.

7.1.2 ATLAS

The ATLAS detector can be divided into three principal groups of subdetectors. The

Inner Detector consists of three specialized tracking systems inside a 2 T supercon-

ducting solenoidal magnetic field. The cryostat for this magnet is surrounded by a

liquid argon electromagnetic calorimeter and a hadronic calorimeter made up of iron

and scintillator material. A muon spectrometer consisting of several different tracking

and scintillating modules constitutes the outermost group, embedded in an air-core

toroidal magnetic field to provide independent measurements of muon momenta.

ATLAS utilizes a right-handed coordinate system with the origin at the center

of the detector, the z-axis along the beam pipe, and the x-axis pointing from the

interaction point toward the center of the LHC. The half of the detector in the +z

region is referred to as the “A side,” and the −z region as the “C side.”
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Inner Detector

A series of three tracking detectors surround the interaction point to record the pas-

sage of charged particles. Two silicon tracking detectors provide precise measurements

of track parameters and vertex reconstruction. Each subdetector consists of a barrel

module with cylindrical symmetry along the z-axis and two endcap modules of track-

ing surfaces arranged in discs perpendicular to the z-axis. The barrel modules provide

measurements along the z-axis and in the r-φ plane, while the endcap modules resolve

hits along the r direction and in the r-φ plane.

The innermost subdetector, the Pixel detector, has approximately 80.4 million

readout channels surrounding the beampipe, providing a hit resolution of 115 µm

along the z-axis and 10 µm in the r-φ plane perpendicular to the z-axis in the barrel

module, and comparable resolution in the endcaps. The silicon microstrip tracker

(SCT) consists of pairs of stereo silicon strips offset by 40 mrad to measure space

points along particle trajectories. Approximately 6.3 million such stereo strips provide

measurement accuracies in the barrel of 580 µm in the z direction and 17 µm in the

r-φ plane and comparable accuracies in the endcaps. Together the Pixel and SCT

cover a region of |η| < 2.5.

The Transition Radiation Tracker (TRT) is the outermost tracking detector of the

ATLAS Inner Detector system. It consists of approximately 350,000 straw tubes, 4

mm in diameter, which act as proportional ionization counters. The TRT extends the

ATLAS tracking capability in the region |η| < 2.0 with typically 36 additional hits per

track. When a charged particle passes through a straw, it leaves an ionization deposit

in the xenon-based active gas mixture which drifts through an electric field toward

the central wire. The drift time is recorded and translated into a corresponding
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drift radius with an accuracy of approximately 130 µm. Additionally, the straws

are surrounded by a fibrous polymer filling (in the barrel) or layers of plastic foils

(in the endcaps) in which electrons produce transition radiation photons with X-ray

energies. These photons then interact with the active gas of a straw tube to produce

a strong ionization signal. The presence of these transition radiation signals provide

a powerful tool for electron identification.

Together the ATLAS Inner Detector systems provide a resolution of approximately

σpT /pT = 0.05% and is sensitive to tracks with pT as low as 0.5 GeV. Primary and

secondary vertices can be identified with high accuracy of just a few tens of µm.

Calorimeters

Surrounding the cryostat housing the tracking solenoidal magnet is an electromag-

netic (EM) calorimeter system. This system consists of finely-segmented sampling

calorimeters covering the range |η| < 4.9. Accordion-shaped lead absorber plates

are immersed in active liquid argon (LAr) sensitive to electromagnetically interacting

particles. The EM calorimeter measures the energy deposited when charged particles

shower in the active volume and provides a resolution of σE/E ≈ 10%. Measure-

ments from a presampler in the region |η| < 1.8 are used to correct the energy lost

by electrons and photons prior to entering the calorimeter.

Hadronic calorimetry is provided in the barrel region by a detector consisting

of alternating layers of steel absorber and scintillating tiles. The steel provides a

dense material with a high hadronic interaction probability to capture the energy

of particles such as protons, neutrons, and neutral pions. This calorimeter provides

coverage out to |η| = 1.7 and an energy resolution σE/E ≈ 50%. The tile calorimeter

109



7.1 The ATLAS detector 7. Prospective Analysis at the ATLAS Experiment

is augmented by two LAr hadronic endcap calorimeters, similar to the EM calorimeter

system, which extends coverage to |η| = 3.2. Finally, the LAr forward calorimeter

provides additional coverage at high eta which is robust against the large radiation

exposure in the forward regions.

Muon Spectrometer

Large air core toroidal magnets provide a 4 T toroidal magnetic field, bending muons

along the z-axis to provide an independent measurement of their momentum. Four

muon detector subsystems are arrayed across the outer-most region of the ATLAS

detector. Monitored Drift Tubes (MDT’s) cover most of the muon acceptance and

provide drift circle measurements in a similar manner to that of the TRT. At large |η|,

additional multiwire proportional chambers called Cathode Strip Chambers (CSC’s)

extend muon acceptance with high granularity. Resistive Plate Chambers (RPC’s)

in the barrel region and Thin Gap Chambers (TGC’s) in the endcaps deliver fast

particle tracking for the trigger system and contribute additional tracking information

for event reconstruction. All together the muon spectrometer provides a momentum

resolution σpT /pT ≈ 10% at pT = 1 TeV (independent of the Inner Detector).

Trigger and Data Acquisition

A three-tier trigger system reduces the rate at which events are recorded from the de-

livered collision rate of approximately 40 MHz down to about 200 Hz. The hardware-

based Level-1 (L1) trigger system first reduces the rate to ≈75 kHz (limited by the

bandwidth of the readout system). The high-level trigger is software-based and con-

sists of the Level-2 (L2) trigger, based on fast reconstruction algorithms, followed by
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full reconstruction across a trigger farm in the event filter.

The large amount of data acquired by the ATLAS experiment puts high demands

on storage facilities. To process the recorded data and make it available for analysis

by the numerous collaboration members, a sophisticated grid computing paradigm

has been adopted. Data sets are duplicated and stored at various computing centers

around the world. Most preliminary analysis tasks, as well as Monte Carlo simulation,

are performed remotely on the computing clusters at these centers.

7.2 Expected signature

As with the analysis at the DØ experiment, we expect the most obvious signature at

ATLAS of Lorentz violation in the top quark sector to manifest as a sidereal modu-

lation in the tt̄ event rate. We can construct an expectation for the time dependent

tt̄ cross section using the same machinery employed previously. It still has the form

σ(t) = σSM B ε (1 + fSME(t)), with the same forms for each possible fSME(t) but dif-

ferent amplitudes and phases. This difference is due to three primary factors – the

orientation and location of the ATLAS experiment, the kinematic phase space acces-

sible to the tt̄ system at the higher collision energy, and the dominance of the gg → tt̄

production process in pp collisions at the LHC over qq̄ → tt̄ (which was the dominant

process at the Tevatron).

7.2.1 Detector location and orientation

ATLAS is located at the interaction point along the LHC nearest to the main CERN

laboratory campus, designated “Point 1.” It lies approximately 100 meters under-
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ground, below a point on the Franco-Swiss border about 8 km northwest the city

of Geneva, Switzerland. The colatitude of this location χ = 43.76◦, slightly further

north than the DØ detector. The z-axis of the ATLAS reference frame points along

the clockwise-circulating proton beam, at an angle of about 11◦ south of east. Similar

to the case for the DØ analysis, the transformation Rα
µ(t) is the product of a rota-

tion about the detector y-axis by α ≈ 101◦, followed by a rotation about the x-axis

by π/2. A second rotation about the y-axis by χ aligns the z-axis with that of the

Sun-centered reference frame. Finally, a rotation about this Z-axis by an angle of ωt

introduces time dependence at the sidereal frequency ω. Again we have

R(t) = R̃z(ωt) R̃y(χ) R̃x(π/2) R̃y(α) (7.1)

using the appropriate rotation parameters for the ATLAS reference frame relative to

the Sun-centered reference frame with the rotation matrices defined in Eqs. (6.7)–

(6.9).

The location and orientation of the ATLAS detector mean it is potentially more

sensitive to SME coefficients coupling to the X−Y plane (i.e. coefficients of the form

CXX , CXY , CXZ , and CY Z) compared to DØ. The ATLAS collision axis points more

directly into this plane (α closer to 0 or π). A smaller deviation of the beam axis

from the X-Y plane enhances the contribution from the already large Azz element.

Comparing the amplitudes of the expected sidereal contribution from the terms Rα
µ(t),

AαβP , and AαβF in Eqs. (6.21)–(6.24) between the two experiments, we find that while

these terms contribute a similar magnitude to the XX and XY cases, the contribution

for the XZ and Y Z cases is larger at ATLAS than at DØ. The exact increase depends

on the choice of SME coefficients to extract and the values of AαβP and AαβF at the two
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detectors. Qualitatively, these larger contributions to the amplitude of fSME(t) for

the latter two cases will increase the amplitude of sidereal time dependence due to the

orientation of the detector and tend to increase the sensitivity to SME coefficients.

7.2.2 Aαβ
P and Aαβ

F contributions

There are two key differences between the production process for tt̄ events at ATLAS

versus DØ that will affect the expression for fSME(t) and the resulting sensitivity

of the analysis. The initial state processes which produce the tt̄ system differ in

pp collisions versus pp̄, and the distributions of parton momenta in the tt̄ system

will change with the collision energy. These differences will alter the sensitivity of

ATLAS to SME coefficients through the terms AαβP and AαβF derived from average

event kinematics.

Because the production mechanism for tt̄ events at DØ was through the pp̄ initial

state, where a proton collided with an antiproton, the initial partons producing the

tt̄ system were dominantly an interacting quark and antiquark pair. This initial state

constituted ≈85% of tt̄ interactions, while the remaining ≈15% of events came from

gluon fusion [26]. The expression for the modified matrix element describing tt̄ pro-

duction and decay, Eqs. (3.2)–(3.9), was derived using only diagrams for the process

qq̄ → tt̄, dominant at the Tevatron. The fractions of events proceeding through qq̄

initial states and gg initial states are essentially reversed in proton-proton collisions

at the LHC. The matrix element describing tt̄ production proceeding via gluon fu-

sion will better describe the effects of SME coefficients on the tt̄ production rate at

ATLAS. However, because of the increased complexity and number of contributing

processes this matrix element has not yet been derived. Instead, we will develop our
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prospectus based upon the matrix element already presented. The specific values

of each component of AαβP and AαβF may be affected by the difference between these

processes, but the analysis method will be independent of this difference.

The other principal difference between tt̄ production at ATLAS versus DØ that

will affect the sensitivity of the analysis is the distribution of parton four-momenta

in tt̄ events created at the two different collision energies. A qualitative expectation

of this difference can be inferred by considering the event-by-event contributions to

the elements of AαβP and AαβF in Figs. B.1–B.4 of Appendix B. Because of the higher

collision energies, we expect each distribution to broaden as the upper limit of trans-

verse and longitudinal parton momenta, as well as total parton energies, increases.

The averages of all off-diagonal elements will likely remain stable at zero, since both

detectors have the same basic geometry (azimuthal symmetry and symmetric η cov-

erage). However, the means of the on-diagonal elements will most certainly increase.

This will increase the expected amplitude of fSME(t) through the contributions to the

b terms of Eqs. (6.18)–(6.20) and (6.25)–(6.26), thereby increasing sensitivity to the

SME coefficients. A recalculation of the elements of AαβP and AαβF using simulated

Monte Carlo tt̄ data at LHC collision conditions will yield quantitative values for this

increase. For this discussion we estimate the sensitivity of ATLAS to SME coefficients

by using the same values of AαβP and AαβF calculated for the DØ analysis, with the

expectation that our estimate will likely be conservative.
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7.3 Event selection

Several analyses have already examined top production and properties at ATLAS.

A number of measurements of the tt̄ production cross section have been made using

integrated luminosities from 35 pb−1 up to 2.05 fb−1 [44]. Figure 7.3 compares the

measurements in various channels. The best combination reported so far measured

σtt̄ = 177± 3(stat.) +8
−7(syst.)± 7(lumi.) pb [41], in good agreement with the Standard

Model expectation. A 1.04 fb−1 sample of events in the lepton plus jets channel was

used to measure the top quark mass, determining mtop = 174.5±0.6(stat.)±2.3(syst.)

GeV [45]. A search for tt̄ resonant states has even been conducted, limiting the

possible mass of such a resonance to mZ′ < 880 GeV for a leptophobic topcolour Z ′

boson and mgKK
< 1130 GeV in the case of a Kaluza-Klein gluon excitation within

the Randall-Sundrum model of warped extra dimensions [46].
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 [pb]ttσ
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ATLAS Preliminary

Data 2011

Channel & Lumi.

New measurements

15 May 2012
Theory (approx. NNLO)

 = 172.5 GeVtfor m

stat. uncertainty
total uncertainty

(lumi)±(syst) ±(stat) ± ttσ

Single lepton -10.70 fb   7 pb±  9 ±  4 ±179 

Dilepton -10.70 fb  pb-   7
+  8  -  11

+ 14  6  ±173 

All hadronic
-11.02 fb

  6 pb± 78 ± 18 ±167 

Combination   7 pb± -   7
+  8  3  ±177 

 + jetshadτ -11.67 fb   7 pb± 42 ± 19 ±200 

 + leptonhadτ -12.05 fb   7 pb± 20 ± 13 ±186 

All hadronic
-14.7 fb

  6 pb± -  57
+ 60 12  ±168 

Figure 7.3: Summary of measurements of the tt̄ production cross section compared
to the corresponding theoretical expectation. The upper part of the figure shows
measurements that are averaged to give the combined value shown. The lower part
shows additional newer measurements not included in the combination. (ATLAS
Experiment c© 2012 CERN)
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Of the published analyses studying top quark properties at ATLAS, the latter

analysis – the search for a tt̄ resonance using 2.05 fb−1 of data at
√
s = 7 TeV – could

most easily be extended to perform a search for Lorentz violation in the top sector

with the tt̄ system using similar techniques to those of the DØ search. This analysis

examined the largest data set so far, and its event selection criteria yielded the largest

tt̄ signal fraction (approximately 79%). We consider the single-lepton event selection,

in which a total of 9622 e+jets events and 12706 µ+jets events comprised the signal

sample. Simple single-lepton triggers were chosen, with a minimum pT of 20 GeV or

22 GeV for the electron selection and 18 GeV for µ+jets. Events were then required

to be reconstructed with at least one primary vertex containing at least five tracks

with pT > 0.4 GeV. There must be exactly one isolated lepton (electron or muon)

in the event, and restrictions were placed on the properties of non-isolated leptons.

Minimum E/T and transverse mass requirements helped enhance the tt̄ event fraction

in each channel. Selected events contained either at least four jets with pT > 25 GeV

and |η| < 2.5 or three such jets if one has an invariant mass of at least 60 GeV; the

latter case is typical for tt̄ events in which one of the top quarks is produced with a

sufficient boost factor that its decay products are collimated (approximately 0.3% of

events). The leading jet was required to have pT > 60 GeV and at least one jet in

the event was tagged as a b-jet.

Background and signal expectations were modeled using various Monte Carlo

generators and a sophisticated simulation of the ATLAS detector. In this event

selection, approximately 79% of events are actual tt̄ production and decay, while

W+jets production constitutes the majority of the background. The contributions

from various processes to the total number of events are reproduced from Ref. [46] in
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Table 7.1.

Table 7.1: Comparison of yields for the e+jets and µ+jets channels for the tt̄ reso-
nance study to contributions expected from tt̄ signal and sources of background. The
uncertainties given are due to systematic effects, while statistical uncertainties are
small and neglected.

Contribution e+jets µ+jets
tt̄ 7830 ± 750 10000 ± 960
Single top 470 ± 50 570 ± 60
W+jets 1120 ± 540 1450 ± 700
Z+jets 85 ± 40 90 ± 45
Diboson 18 ± 1 18 ± 1
Multijet 340 ± 170 470 ± 240
Total Expected 9860 ± 940 12600 ± 1210
Total Observed 9622 12706

A search for Lorentz violation in tt̄ production and decay using this analysis

selection has a comparable signal purity to that of the DØ analysis (fS ≈ 0.79) but

an increase in statistics by about a factor of 30.

The tt̄ resonance analysis did not report a detailed study of event selections with

large contributions from background (non-tt̄) events. These selections were useful

to the DØ analysis as a cross-check to confirm the lack of unexpected sidereal time

dependence induced by non-LV effects, e.g. 24-hour periodic variations in detector ef-

ficiencies. However, the shorter run period of the ATLAS data set suggests a different

method for cross-checks would be most appropriate. This will be discussed later.
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7.4 Expected sensitivity

The statistical uncertainty will likely still be the largest contribution to the limits on

SME coefficients measurable in tt̄ production and decay at ATLAS. The dominant

improvement that ATLAS can provide over the DØ results therefore comes through

the larger sample size. Table 7.2 compares the number of events in the signal event

selection expected at ATLAS described above to that used for the analysis at DØ.

Table 7.2: Comparison of signal sample size for the e+jets and µ+jets channels for
the tt̄ resonance study to those used for the DØ analysis.

ATLAS DØ
e+jets 9622 401
µ+jets 12706 345

The e+jets sample is larger by a factor of 24 and the µ+jets sample is larger

by a factor of 37. Assuming conservatively that the contributions from the detector

location and orientation, as well as those from AαβP and AαβF , to the expected sidereal

amplitude will be comparable to those determined for the DØ analysis, we can scale

the statistical uncertainties of Tables 6.15–6.22 by the square root of the increase in

sample size to determine the expected statistical sensitivity of ATLAS. Compared to

the DØ analysis, statistical uncertainties are reduced by a factor of 4.9 for the e+jets

sample and by a factor of 6 for the µ+jets sample. Tables 7.3–7.6 compare this

expectation to that found in the DØ analysis. ATLAS has the potential for nearly

an order of magnitude in improvement on the limits set by DØ in Ref. [1] and may

be able to set the first limits on the linear combination cµν = (cL)µν + (cR)µν .
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Table 7.3: The expected statistical uncertainty on (cL)µν at ATLAS compared to that
of the DØ analysis.

e+jets µ+jets
Coefficient ATLAS DØ ATLAS DØ

(cL)XX 0.036 0.178 0.023 0.141
(cL)XY 0.037 0.179 0.023 0.142
(cL)XZ 0.024 0.120 0.016 0.097
(cL)Y Z 0.025 0.122 0.016 0.099

Table 7.4: The expected statistical uncertainty on (cR)µν at ATLAS compared to that
of the DØ analysis.

e+jets µ+jets
Coefficient ATLAS DØ ATLAS DØ

(cR)XX 0.024 0.119 0.022 0.131
(cR)XY 0.024 0.120 0.022 0.132
(cR)XZ 0.019 0.091 0.017 0.100
(cR)Y Z 0.019 0.092 0.017 0.101

Table 7.5: The expected statistical uncertainty on cµν at ATLAS compared to that
of the DØ analysis.

e+jets µ+jets
Coefficient ATLAS DØ ATLAS DØ

cXX 0.148 0.727 0.622 3.769
cXY 0.149 0.732 0.627 3.801
cXZ 0.138 0.674 0.264 1.599
cY Z 0.135 0.660 0.266 1.609

Table 7.6: The expected statistical uncertainty on dµν at ATLAS compared to that
of the DØ analysis.

e+jets µ+jets
Coefficient ATLAS DØ ATLAS DØ

dXX 0.029 0.142 0.022 0.136
dXY 0.029 0.143 0.023 0.137
dXZ 0.021 0.104 0.016 0.099
dY Z 0.021 0.105 0.017 0.100
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7.4.1 Power spectrum of the event rate

As discussed previously, the tt̄ resonance analysis performed by ATLAS only studied

the signal event selection of events with a lepton plus at least 4 jets. A study of

the events in this selection with fewer jets, likely dominated by W+jets production,

was not reported. These events are therefore will likely not be immediately available

for the same cross-check procedure employed by the DØ analysis. Furthermore, the

period of time over which the ATLAS data was collected was significantly shorter

than that of the DØ analysis. The dilution of any potential solar (24-hour) periodic

contribution due to variations in detector efficiencies is therefore not guaranteed to

be as significant. A different method of controlling for non-sidereal periodic effects is

therefore necessary.

By utilizing the data describing the full instantaneous luminosity profile for the

run period covering the event selection, we can estimate the amplitude of any period

oscillation in the luminosity corrected event rate at any frequency. The power spec-

trum corresponding to this rate can be approximated using a Lomb periodogram.

This tool approximates a Fourier transform of time dependent data which is collected

at non-uniform intervals. The method is described in detail in Ref. [47], and Ref. [20]

provides an example of its use. The spectral power at a frequency ω is

P (ω) ≡
|
∑N

j=1 rje
2iπωtj |2

Nσ2(rj)
. (7.2)

For our analysis, the N measurements at times tj correspond to the luminosity blocks

from which candidate tt̄ events are drawn by the event selections. The measurements

rj are the luminosity-corrected event rates at those times, such that
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rj ≈
n

(tt̄)
j /∆tj

Lj/Lint

, (7.3)

where n
(tt̄)
j is the number of candidate tt̄ events in luminosity block j (typically 0 or

1), ∆tj is the width of the luminosity block (typically 60 s), and Lj is the integrated

luminosity collected during that luminosity block. The probability that P (ω) exceeds

a value S in the absence of a time dependence in the event rate at a given frequency

(where events occur at random times due to the probabilistic production process) is an

exponential function exp(−S). If we test M independent frequencies, the probability

that P (ω) exceeds S is 1− [1−exp(−S)]M . This provides a handle on the significance

of a peak in the power spectrum at any given frequency.

Following the example of the BaBar search for CPT and Lorentz violation inB0-B̄0

oscillations [20], by testing over 20,000 frequencies we would oversample the frequency

range by a factor of about 2.2 and avoid underestimating the spectral power of signals

at the tested frequencies. This corresponds to about 9500 independent frequencies

and provides sufficient frequency resolution to resolve both sidereal and solar periods.

As an example of this procedure in practice, Fig. 7.4 reproduces the power spectrum

derived in the BaBar search for CPT and Lorentz violation in B0-B̄0 oscillations [20].

Since LV in tt̄ events could also manifest at a frequency of one or two oscillations

per sidereal day, our analysis would need to examine frequencies corresponding to a

comparable range.
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Figure 7.4: The Periodogram used by the BaBar experiment to search for signs of
CPT and Lorentz violation through variations in B0-B̄0 oscillations observed through
opposite-sign dilepton events in Υ(4S) → BB̄ decays [20]. The triangles in the
inset indicate the solar and sidereal frequencies. No significant signal appears at any
frequency.
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7.5 Likelihood analysis

The robustness of the analysis can be improved if the full profile of the instantaneous

luminosity corresponding to the signal data set is available. While the integrated

luminosity in bins of sidereal phase was sufficient for the DØ analysis, with the full

instantaneous luminosity profile we could perform a more sensitive analysis using a

maximum likelihood technique.

For each event, we consider the joint probability of the observed data (the time

of the event, t) and the SME coefficient to be extracted, C. The likelihood function

is defined as the product of this probability for each event in the sample. This

probability depends on the event type – signal (tt̄) or background (non-tt̄). The

per-event probability is

Pevt(t, C) =
∑
type

Pevt(t, C, type)

=
∑
type

P (t|type, C)P (type, C)

=
∑
type

P (t|type, C)P (type)P (C)

= [Psig(t|C)P (type = sig) + Pbkg(t)P (type = bkg)]P (C). (7.4)

We treat the signal probability Psig(t|C) as the instantaneous event rate, σ(t)L(t),

normalized to the event rate integrated over the data taking period τ :
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Psig(t|C) =
σ(t)L(t)∫

τ
σ(t)L(t)dt

≈ 1

τ

L(t)

Lint

(1 + fSME(t)) . (7.5)

P (type = sig) is the average signal fraction, fS. The background probability is again

assumed to be proportional only to the instantaneous luminosity such that Pbkg(t) =

1/τ × L(t)/Lint and the background fraction P (type = bkg) = 1 − fS. Finally, the

prior probability density for the SME coefficients, P (C), is assumed to be flat and

therefore does not contribute to the maximization of the likelihood function; nor does

the constant 1/τ .

To extract values for the SME coefficients from the data, we maximize the function

L(C) =
∏
evt

Pevt(t, C) (7.6)

=
∏
evt

L(t)

Lint

(fSPsig(t|C) + (1− fS)) (7.7)

=
∏
evt

L(t)

Lint

(1 + fSfSME(t)) . (7.8)

The values of the SME coefficients at the maximum of this function [in practice, the

minimum of − ln(L)] represents those values which best describe the observed data.

We could also expand these probability density functions to include a possible

contribution from detector effects exhibiting a periodic dependence on solar (24-hour)

time with amplitude Asol and phase φsol. Integrating over this phase from φsol = 0

to φsol = π (with constant prior probability P (φsol)), the signal and background
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probabilities would become

Psig(t|C,Asol) ≈
1

τ

L(t)

Lint

(1 + fSME(t) + 2Asol cos(ωsolt)) , (7.9)

Pbkg(t, Asol) ≈
1

τ

L(t)

Lint

(1 + 2Asol cos(ωsolt)) . (7.10)

Equation (7.8) would become a two-dimensional likelihood function dependent on

both C and Asol such that

L(C,Asol) =
∏
evt

L(t)

Lint

(1 + fSfSME(t) + 2Asol cos(ωsolt)) . (7.11)

The neighborhood of the maximum of this likelihood function would clearly quantify

the relationship between any possible periodic signals at both the sidereal and solar

frequencies.

7.6 Further possibilities

The reach of a search for Lorentz violation in top quark production and decay at

ATLAS could potentially be extended beyond what has been outlined here. As the

detector continues to collect data, the sample size of events containing top quarks will

increase substantially. Larger tt̄ data sets could be examined in bins of pseudorapidity

or azimuthal angle while still maintaining sufficient statistical sensitivity to draw

meaningful conclusions. The most prominent signal of Lorentz violation would likely

still be a time-varying dependence on the direction of top quarks and their decay

products with respect to the Sun-centered reference frame. Contributions to some of

the off-diagonal elements of AαβP and AαβF may not average to zero when considered in
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bins of e.g. η or φ, and an analysis using such segmented data sets may be sensitive

to additional SME coefficients coupling to those off-diagonal elements.

Additionally, the cross section for producing events containing a single top quark

is much higher at the LHC than at the Tevatron. This analysis has only considered

tt̄ production and decay, but there is the potential for other SME coefficients to

make significant contributions to the production of single t and t̄ quarks. ATLAS is

accumulating a large collection of single top quark candidate events [48]. An analysis

of single top events may also be sensitive to CPT-violating effects by comparing the

rates of the two processes.

Regardless of the magnitude of the gains from increasingly sophisticated versions

of the analysis to search for Lorentz violation in top quark events, the ATLAS ex-

periment is positioned to make substantial improvements to the limits already set on

the top sector SME coefficients by virtue of its statistical power alone. ATLAS has

the potential for an order of magnitude improvement on the existing limits, and may

be able to provide even more sensitivity.
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Conclusions

We have performed the first search for signals of Lorentz violation in the top quark

sector by examining tt̄ pair production and decay in data collected with the DØ

particle detector at the Fermilab Tevatron accelerator. Violation of Lorentz symmetry

would most prominently affect this process by introducing a unique periodic time

dependence in the tt̄ cross section. The corresponding event rate would exhibit a

modulation as a function of sidereal time as the detector reference frame rotates with

the Earth relative to the Sun-centered reference frame. To maximize sensitivity to

this time dependence, we considered events containing a single isolated lepton plus

at least three jets, where the lepton is either an electron or a muon. The non-tt̄

backgrounds in this selection are principally from kinematically similar events, like

W+jets production, and dominate lepton plus jets events in which only two or three

jets are observed. We were able to take advantage of these latter event selections

as cross-checks to confirm that no unexpected periodic time dependence, such as

day/night temperature cycling or accelerator conditions, affected our conclusions. We
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found that both the signal- and background-dominated event selections are consistent

with no sidereal time dependence.

The Standard-Model Extension is a phenomenological framework that provides a

mathematical description of the contributions of general Lorentz- and CPT-violating

operators that can be added to the Lagrange density of the Standard Model. In

this way, the SME allows us to develop and test a quantitative expectation for how

such contributions effect observables like the tt̄ cross section. We translated the

contribution from the SME coefficients (cL)µν = (cQ)µν33 and (cR)µν = (cU)µν33 to the

matrix element describing tt̄ production and decay via the process qq̄ → tt̄ into an

expectation for the tt̄ event rate, and compared this to data from the DØ detector.

This analysis is sensitive to the XX, Y Y , XY , XZ, and Y Z components of

(cL)µν and (cR)µν , as well as the linear combinations cµν = (cL)µν + (cR)µν and

dµν = (cL)µν − (cR)µν . We find these coefficients to be consistent with zero within

two standard deviations. We define the observed limits for each coefficient as the

extracted value ±2 standard deviations, corresponding to 95% confidence level inter-

vals. Because these intervals are larger than unity for the linear combination cµν , we

do not report measurements or limits for those coefficients. The central values, statis-

tical and systematic unceratinties, and corresponding C.L. intervals for the remaining

coefficients are presented in Tables 8.1–8.3.

We have also considered how this analysis might be performed at the ATLAS

detector using high energy proton-proton collisions delivered by the Large Hadron

Collider. The tt̄ production cross section is much higher at this experiment and the

statistical power of a comparable analysis is correspondingly greater compared to

the DØ analysis. The higher energy of these pp collisions, as well as the location and
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Table 8.1: Limits on SME coefficients at the 95% C.L., assuming (cU)µν ≡ 0.

Coefficient Value± Stat.± Sys. 95% C.L. Interval
(cQ)XX33 −0.12± 0.11 ± 0.02 [−0.34,+0.11]
(cQ)Y Y 33 0.12± 0.11 ± 0.02 [−0.11,+0.34]
(cQ)XY 33 −0.04± 0.11 ± 0.01 [−0.26,+0.18]
(cQ)XZ33 0.15± 0.08 ± 0.02 [−0.01,+0.31]
(cQ)Y Z33 −0.03± 0.08 ± 0.01 [−0.19,+0.12]

Table 8.2: Limits on SME coefficients at the 95% C.L., assuming (cQ)µν ≡ 0.

Coefficient Value± Stat.± Sys. 95% C.L. Interval
(cU)XX33 0.10± 0.09 ± 0.02 [−0.08,+0.27]
(cU)Y Y 33 −0.10± 0.09 ± 0.02 [−0.27,+0.08]
(cU)XY 33 0.04± 0.09 ± 0.01 [−0.14,+0.22]
(cU)XZ33 −0.14± 0.07 ± 0.02 [−0.28,+0.01]
(cU)Y Z33 0.01± 0.07 ±< 0.01 [−0.13,+0.14]

Table 8.3: Limits on SME coefficients at the 95% C.L., assuming cµν ≡ 0.

Coefficient Value± Stat.± Sys. 95% C.L. Interval
dXX −0.11± 0.10 ± 0.02 [−0.31,+0.09]
dY Y 0.11± 0.10 ± 0.02 [−0.09,+0.31]
dXY −0.04± 0.10 ± 0.01 [−0.24,+0.16]
dXZ 0.14± 0.07 ± 0.02 [−0.01,+0.29]
dY Z −0.02± 0.07 ±< 0.01 [−0.16,+0.13]

orientation of the detector, also contribute to a potential further increase in sensitivity

to Lorentz violating effects in the tt̄ event rate at ATLAS. We conservatively estimate

that ATLAS may be able to improve on the limits presented here by almost an

order of magnitude, and may be sensitive enough to set the first limits on the linear

combination cµν .

We have found no evidence that the top quark violates Lorentz symmetry. We

have presented the first search for Lorentz violation in the top quark sector and
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8. Conclusions

have found the corresponding coefficients within the Standard-Model Extension to be

consistent with zero. It is important to test all particle species, as different particles

can have distinct Lorentz-violating properties. This analysis represents the first such

constraints on Lorentz violation in the top quark sector.
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Appendix A

List of Triggers for DØ Data

We reproduce the trigger lists used by the tt̄ cross section analysis performed at DØ

using the lepton+jets channel in proton-antiproton collisions at
√
s = 1.96 TeV [38].

Table A.1: Trigger and corresponding integrated luminosity analyzed for the e+jets
sample in Run IIa.

Triggerlist Version Trigger Integrated luminosity [pb−1]
V8.0–V14.99 JT 125TT 1078.81
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Table A.2: Trigger and corresponding integrated luminosity analyzed for the µ+jets
sample in Run IIa.

Triggerlist Version Trigger Integrated luminosity [pb−1]
V8.0–V9.0 MU JT20 L2M0 24.80
V9.0–V10.0 MU JT20 L2M0 25.01
V10.0–V11.0 MU JT20 L2M0 10.70
V11.0–V12.0 MU JT20 L2M0 65.85
V12.0–V13.0 MU JT25 L2M0 231.84
V13.0–V13.2 MUJ2 JT25 31.86
V13.2–V13.3 MUJ2 JT25 LM3 16.11
V13.3–V14.0 MUJ2 JT30 LM3 255.80
V14.0–V14.2 MUJ1 JT25 LM3 0.01
V14.2–V14.3 MUJ1 JT25 ILM3 21.89
V14.3–V15.0 MUJ1 JT35 LM3 317.17

Table A.3: Trigger and corresponding integrated luminosity analyzed for the e+jets
and µ+jets samples in Run IIb.

Triggerlist Version Trigger Integrated luminosity [pb−1]
V15.0–V15.99 JT125 L3J125 1619.77
V16.0–V16.99 JT125 L3J125 2661.89
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Contributions to A
αβ
P and A

αβ
F
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B. Contributions to AαβP and AαβF
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Figure B.1: Distribution of event-by-event contributions to the elements of AαβP in
the simulated e+jets sample. Rows and columns are ordered (t, x, y, z).
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Figure B.2: Distribution of event-by-event contributions to the elements of AαβF in
the simulated e+jets sample. Rows and columns are ordered (t, x, y, z).
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Figure B.3: Distribution of event-by-event contributions to the elements of AαβP in
the simulated µ+jets sample. Rows and columns are ordered (t, x, y, z).
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B. Contributions to AαβP and AαβF
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Figure B.4: Distribution of event-by-event contributions to the elements of AαβF in
the simulated µ+jets sample. Rows and columns are ordered (t, x, y, z).
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Appendix C

Systematics in MC Summation

The event selection used for the Monte Carlo samples is changed by increasing and

decreasing three parameters that most affect tt̄ reconstruction by one standard de-

viation: jet energy scale (JES), jet energy resolution (JER), and jet identification

(JETID). The AαβP and AαβF matrices are recalculated after separate changes for each

of these sources. Tables C.1–C.16 summarize the systematic uncertainties for the

diagonal elements that contribute to Eq. (3.25) for events collected with the DØ

detector.
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C.1 Uncertainties for e+jets C. Systematics in MC Summation

C.1 Uncertainties for e+jets

Table C.1: Uncertainties on AttP

Uncertainty −1sd +1sd
JER 0.0002 -0.0002
JES -0.0006 0.0003

JETID -0.0002 -0.0003
STAT -0.0010 0.0010
Total 0.0012 0.0011

Table C.2: Uncertainties on AttF

Uncertainty −1sd +1sd
JER 0.0011 -0.0436
JES 0.0017 0.0112

JETID -0.0063 -0.0062
STAT -0.0920 0.0920
Total 0.0922 0.1026

Table C.3: Uncertainties on AxxP

Uncertainty −1sd +1sd
JER 0.0004 -0.0003
JES 0.0009 -0.0009

JETID 0.0001 0.0001
STAT -0.0004 0.0004
Total 0.0011 0.0010

Table C.4: Uncertainties on AxxF

Uncertainty −1sd +1sd
JER -0.0114 0.0044
JES -0.0132 0.0097

JETID 0.0001 0.0000
STAT -0.0133 0.0133
Total 0.0219 0.0170

Table C.5: Uncertainties on AyyP

Uncertainty −1sd +1sd
JER -0.0001 -0.0002
JES 0.0011 -0.0011

JETID 0.0000 0.0000
STAT -0.0004 0.0004
Total 0.0012 0.0012

Table C.6: Uncertainties on AyyF

Uncertainty −1sd +1sd
JER -0.0097 0.0069
JES -0.0122 0.0111

JETID -0.0001 -0.0001
STAT -0.0147 0.0147
Total 0.0214 0.0197
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C.2 Uncertainties for µ+jets C. Systematics in MC Summation

Table C.7: Uncertainties on AzzP

Uncertainty −1sd +1sd
JER 0.0000 -0.0003
JES -0.0002 -0.0004

JETID -0.0002 0.0002
STAT -0.0011 0.0011
Total 0.0011 0.0012

Table C.8: Uncertainties on AzzF

Uncertainty −1sd +1sd
JER -0.0204 0.0025
JES -0.0022 0.0083

JETID -0.0005 -0.0004
STAT -0.0484 0.0484
Total 0.0526 0.0492

C.2 Uncertainties for µ+jets

Table C.9: Uncertainties on AttP

Uncertainty −1sd +1sd
JER -0.0005 0.0001
JES -0.0004 0.0004

JETID -0.0001 -0.0001
STAT -0.0010 0.0010
Total 0.0012 0.0011

Table C.10: Uncertainties on AttF

Uncertainty −1sd +1sd
JER 0.0627 -0.0191
JES 0.0382 -0.0255

JETID -0.0068 -0.0068
STAT -0.0684 0.0684
Total 0.1006 0.0758

Table C.11: Uncertainties on AxxP

Uncertainty −1sd +1sd
JER 0.0001 0.0003
JES 0.0009 -0.0008

JETID 0.0001 0.0001
STAT -0.0004 0.0004
Total 0.0010 0.0009

Table C.12: Uncertainties on AxxF

Uncertainty −1sd +1sd
JER -0.0018 0.0073
JES -0.0117 0.0161

JETID -0.0008 -0.0007
STAT -0.0107 0.0107
Total 0.0160 0.0207
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C.2 Uncertainties for µ+jets C. Systematics in MC Summation

Table C.13: Uncertainties on AyyP

Uncertainty −1sd +1sd
JER -0.0001 0.0001
JES 0.0007 -0.0008

JETID 0.0000 0.0000
STAT -0.0004 0.0004
Total 0.0008 0.0009

Table C.14: Uncertainties on AyyF

Uncertainty −1sd +1sd
JER -0.0040 0.0055
JES -0.0109 0.0135

JETID 0.0004 0.0004
STAT -0.0097 0.0097
Total 0.0151 0.0175

Table C.15: Uncertainties on AzzP

Uncertainty −1sd +1sd
JER -0.0009 0.0005
JES 0.0001 0.0001

JETID -0.0001 -0.0001
STAT -0.0012 0.0012
Total 0.0015 0.0013

Table C.16: Uncertainties on AzzF

Uncertainty −1sd +1sd
JER 0.0043 0.0094
JES 0.0107 -0.0087

JETID -0.0009 -0.0008
STAT -0.0274 0.0274
Total 0.0297 0.0303
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Appendix D

`+n-jets Cross-Checks

D.1 `+2-jets cross-check

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

3

2

1

0

1

2

3 1DØ, 5.3 fb(a)

+2jetse tt

(a) e+2-jets tt̄ candidates.

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

3

2

1

0

1

2

3 1DØ, 5.3 fb(b)

+2jetsµ tt

(b) µ+2-jets tt̄ candidates.

Figure D.1: Number of `+2-jets tt̄ candidates per two sidereal hours.
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D.1 `+2-jets cross-check D. `+n-jets Cross-Checks

D.1.1 Electron amplitudes

Table D.1: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0184± 0.0326 0.565
XY -0.0513± 0.0329 1.56
XZ -0.0736± 0.0314 2.35
Y Z -0.0609± 0.0320 1.91

Table D.2: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0184± 0.0326 0.565
XY 0.0513± 0.0329 1.56
XZ 0.0653± 0.0315 2.07
Y Z 0.0703± 0.0318 2.21

Table D.3: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0184± 0.0326 0.565
XY 0.0513± 0.0329 1.56
XZ 0.0343± 0.0320 1.07
Y Z 0.0879± 0.0313 2.81

Table D.4: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0184± 0.0326 0.565
XY -0.0513± 0.0329 1.56
XZ -0.0690± 0.0314 2.2
Y Z -0.0665± 0.0319 2.09
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D.1 `+2-jets cross-check D. `+n-jets Cross-Checks

D.1.2 Muon amplitudes

Table D.5: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0663± 0.0386 1.72
XY -0.0352± 0.0389 0.905
XZ -0.0088± 0.0371 0.237
Y Z -0.0012± 0.0378 0.0306

Table D.6: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0663± 0.0386 1.72
XY 0.0352± 0.0389 0.905
XZ 0.0087± 0.0372 0.233
Y Z 0.0022± 0.0376 0.0594

Table D.7: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0663± 0.0386 1.72
XY 0.0352± 0.0389 0.905
XZ -0.0034± 0.0374 0.092
Y Z 0.0084± 0.0375 0.223

Table D.8: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0663± 0.0386 1.72
XY -0.0352± 0.0389 0.905
XZ -0.0088± 0.0371 0.235
Y Z -0.0017± 0.0377 0.0449

150



D.2 `+3-jets cross-check D. `+n-jets Cross-Checks

D.2 `+3-jets cross-check
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Figure D.2: Number of `+3-jets tt̄ candidates per two sidereal hours.
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D.2 `+3-jets cross-check D. `+n-jets Cross-Checks

D.2.1 Electron amplitudes

Table D.9: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0325± 0.0507 0.641
XY -0.0611± 0.0511 1.2
XZ -0.0167± 0.0487 0.343
Y Z 0.0567± 0.0497 1.14

Table D.10: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0325± 0.0507 0.641
XY 0.0611± 0.0511 1.2
XZ 0.0245± 0.0490 0.501
Y Z -0.0531± 0.0494 1.08

Table D.11: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0325± 0.0507 0.641
XY 0.0611± 0.0511 1.2
XZ 0.0441± 0.0497 0.889
Y Z -0.0381± 0.0487 0.782

Table D.12: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0325± 0.0507 0.641
XY -0.0611± 0.0511 1.2
XZ -0.0212± 0.0488 0.434
Y Z 0.0547± 0.0495 1.11
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D.2 `+3-jets cross-check D. `+n-jets Cross-Checks

D.2.2 Muon amplitudes

Table D.13: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0436± 0.0620 0.704
XY -0.0468± 0.0624 0.751
XZ -0.0229± 0.0595 0.385
Y Z 0.0488± 0.0607 0.803

Table D.14: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0436± 0.0620 0.704
XY 0.0468± 0.0624 0.751
XZ 0.0287± 0.0598 0.48
Y Z -0.0450± 0.0604 0.746

Table D.15: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0436± 0.0620 0.704
XY 0.0468± 0.0624 0.751
XZ 0.0399± 0.0600 0.664
Y Z 0.0351± 0.0601 0.584

Table D.16: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0436± 0.0620 0.704
XY -0.0468± 0.0624 0.751
XZ -0.0258± 0.0596 0.433
Y Z 0.0470± 0.0605 0.776
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D.3 Agreement across samples D. `+n-jets Cross-Checks

D.3 Agreement across samples

Table D.17: The values of χ2 and probability reflecting consistency with no time
dependence for the 4 independent measurements of amplitudes of sidereal oscillations
in the cross-check channels (`+n-jets, where ` = e, µ and n = 2, 3) for each of the 16
phases assumed in this analysis.

Phase Assumption χ2 (4 dof) Prob(χ2)

(cR)µν = 0 XX 4.167 0.384
XY 5.246 0.263
XZ 5.821 0.213
Y Z 5.576 0.233

(cL)µν = 0 XX 4.167 0.384
XY 5.246 0.263
XZ 4.837 0.304
Y Z 6.616 0.158

dµν = 0 XX 4.167 0.384
XY 5.246 0.263
XZ 2.389 0.665
Y Z 8.911 0.063

cµν = 0 XX 4.167 0.384
XY 5.246 0.263
XZ 5.271 0.261
Y Z 6.178 0.186
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Appendix E

Fit Results: Run IIa and Run IIb
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E.1 `+2-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.1 `+2-jets in Run IIa
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Figure E.1: Number of `+2-jets tt̄ candidates per two sidereal hours, Run IIa.
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E.1 `+2-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.1.1 Electron amplitudes

Table E.1: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1288± 0.0687 1.88
XY 0.0182± 0.0701 0.26
XZ -0.1467± 0.0678 2.16
Y Z -0.1022± 0.0664 1.54

Table E.2: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1288± 0.0687 1.88
XY -0.0182± 0.0701 0.26
XZ 0.1275± 0.0673 1.9
Y Z 0.1235± 0.0669 1.84

Table E.3: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1288± 0.0687 1.88
XY -0.0182± 0.0701 0.26
XZ 0.0668± 0.0660 1.01
Y Z 0.1690± 0.0683 2.48

Table E.4: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1288± 0.0687 1.88
XY 0.0182± 0.0701 0.26
XZ -0.1366± 0.0675 2.02
Y Z -0.1144± 0.0667 1.72
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E.1 `+2-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.1.2 Muon amplitudes

Table E.5: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0094± 0.0822 0.115
XY 0.0163± 0.0839 0.195
XZ 0.0158± 0.0808 0.196
Y Z 0.1214± 0.0797 1.52

Table E.6: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0094± 0.0822 0.115
XY -0.0163± 0.0839 0.195
XZ -0.0006± 0.0803 0.00751
Y Z -0.1235± 0.0802 1.54

Table E.7: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0094± 0.0822 0.115
XY -0.0163± 0.0839 0.195
XZ 0.1245± 0.0808 1.54
Y Z 0.0170± 0.0797 0.213

Table E.8: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0094± 0.0822 0.115
XY 0.0163± 0.0839 0.195
XZ 0.0083± 0.0806 0.103
Y Z 0.1225± 0.0799 1.53
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E.2 `+3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.2 `+3-jets in Run IIa
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Figure E.2: Number of `+3-jets tt̄ candidates per two sidereal hours, Run IIa.
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E.2 `+3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.2.1 Electron amplitudes

Table E.9: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed appro-
priate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.2366± 0.1039 2.27
XY 0.0026± 0.1057 0.0242
XZ 0.1569± 0.1022 1.53
Y Z 0.2682± 0.1004 2.67

Table E.10: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.2366± 0.1039 2.27
XY -0.0026± 0.1057 0.0242
XZ -0.1144± 0.1022 1.12
Y Z -0.2904± 0.1012 2.87

Table E.11: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.2366± 0.1039 2.27
XY -0.0026± 0.1057 0.0242
XZ 0.0087± 0.0998 0.0876
Y Z -0.3249± 0.1032 3.14

Table E.12: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.2366± 0.1039 2.27
XY 0.0026± 0.1057 0.0242
XZ 0.1326± 0.1022 1.3
Y Z 0.2813± 0.1009 2.79
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E.2 `+3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.2.2 Muon amplitudes

Table E.13: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0812± 0.1235 0.657
XY 0.2188± 0.1256 1.74
XZ 0.1123± 0.1214 0.927
Y Z 0.0160± 0.1204 0.134

Table E.14: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0812± 0.1235 0.657
XY -0.2188± 0.1256 1.74
XZ -0.1083± 0.1204 0.898
Y Z -0.0296± 0.1204 0.245

Table E.15: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0812± 0.1235 0.657
XY -0.2188± 0.1256 1.74
XZ 0.0454± 0.1214 0.374
Y Z -0.1022± 0.1204 0.848

Table E.16: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0812± 0.1235 0.657
XY 0.2188± 0.1256 1.74
XZ 0.1103± 0.1214 0.914
Y Z 0.0227± 0.1204 0.189
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E.3 `+>3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.3 `+>3-jets in Run IIa
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Figure E.3: Number of `+>3-jets tt̄ candidates per two sidereal hours, Run IIa.
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E.3 `+>3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.3.1 Electron amplitudes

Table E.17: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0470± 0.1382 0.34
XY -0.0413± 0.1413 0.292
XZ 0.4169± 0.1366 3.06
Y Z 0.0259± 0.1336 0.194

Table E.18: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0470± 0.1382 0.34
XY 0.0413± 0.1413 0.292
XZ -0.4028± 0.1356 2.98
Y Z -0.0835± 0.1346 0.621

Table E.19: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0470± 0.1382 0.34
XY 0.0413± 0.1413 0.292
XZ -0.3249± 0.1326 2.45
Y Z -0.2409± 0.1376 1.76

Table E.20: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0470± 0.1382 0.34
XY -0.0413± 0.1413 0.292
XZ 0.4099± 0.1356 3.02
Y Z 0.0587± 0.1346 0.438
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E.3 `+>3-jets in Run IIa E. Fit Results: Run IIa and Run IIb

E.3.2 Muon amplitudes

Table E.21: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1141± 0.1403 0.814
XY 0.0688± 0.1434 0.481
XZ 0.0834± 0.1376 0.606
Y Z -0.1741± 0.1356 1.28

Table E.22: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1141± 0.1403 0.814
XY -0.0688± 0.1434 0.481
XZ -0.1032± 0.1366 0.754
Y Z 0.1650± 0.1366 1.2

Table E.23: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1141± 0.1403 0.814
XY -0.0688± 0.1434 0.481
XZ -0.1498± 0.1376 1.09
Y Z -0.1245± 0.1356 0.913

Table E.24: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1141± 0.1403 0.814
XY 0.0688± 0.1434 0.481
XZ 0.0934± 0.1376 0.68
Y Z -0.1700± 0.1366 1.24
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E.4 `+2-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.4 `+2-jets in Run IIb
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Figure E.4: Number of `+2-jets tt̄ candidates per two sidereal hours, Run IIb.
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E.4 `+2-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.4.1 Electron amplitudes

Table E.25: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0566± 0.0370 1.53
XY -0.0677± 0.0372 1.82
XZ -0.0552± 0.0353 1.56
Y Z -0.0426± 0.0363 1.17

Table E.26: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0566± 0.0370 1.53
XY 0.0677± 0.0372 1.82
XZ 0.0497± 0.0356 1.4
Y Z 0.0496± 0.0360 1.38

Table E.27: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0566± 0.0370 1.53
XY 0.0677± 0.0372 1.82
XZ 0.0283± 0.0364 0.776
Y Z 0.0624± 0.0352 1.77

Table E.28: Amplitude extracted from e+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0566± 0.0370 1.53
XY -0.0677± 0.0372 1.82
XZ -0.0522± 0.0355 1.47
Y Z -0.0468± 0.0362 1.29
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E.4 `+2-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.4.2 Muon amplitudes

Table E.29: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0836± 0.0437 1.91
XY -0.0467± 0.0439 1.06
XZ -0.0176± 0.0418 0.422
Y Z -0.0343± 0.0429 0.798

Table E.30: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0836± 0.0437 1.91
XY 0.0467± 0.0439 1.06
XZ 0.0138± 0.0421 0.328
Y Z 0.0357± 0.0426 0.839

Table E.31: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0836± 0.0437 1.91
XY 0.0467± 0.0439 1.06
XZ -0.0367± 0.0422 0.87
Y Z 0.0088± 0.0425 0.207

Table E.32: Amplitude extracted from µ+2-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0836± 0.0437 1.91
XY -0.0467± 0.0439 1.06
XZ -0.0158± 0.0419 0.376
Y Z -0.0350± 0.0428 0.82
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E.5 `+3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.5 `+3-jets in Run IIb
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Figure E.5: Number of `+3-jets tt̄ candidates per two sidereal hours, Run IIb.
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E.5 `+3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.5.1 Electron amplitudes

Table E.33: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0261± 0.0579 0.451
XY -0.0731± 0.0582 1.26
XZ -0.0742± 0.0554 1.34
Y Z -0.0116± 0.0570 0.204

Table E.34: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0261± 0.0579 0.451
XY 0.0731± 0.0582 1.26
XZ 0.0731± 0.0558 1.31
Y Z 0.0223± 0.0565 0.394

Table E.35: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0261± 0.0579 0.451
XY 0.0731± 0.0582 1.26
XZ 0.0618± 0.0572 1.08
Y Z 0.0474± 0.0552 0.859

Table E.36: Amplitude extracted from e+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0261± 0.0579 0.451
XY -0.0731± 0.0582 1.26
XZ -0.0738± 0.0556 1.33
Y Z -0.0178± 0.0567 0.314
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E.5 `+3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.5.2 Muon amplitudes

Table E.37: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0801± 0.0714 1.12
XY -0.1351± 0.0718 1.87
XZ -0.0642± 0.0683 0.939
Y Z 0.0644± 0.0702 0.917

Table E.38: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0801± 0.0714 1.12
XY 0.1351± 0.0718 1.87
XZ 0.0721± 0.0688 1.05
Y Z -0.0549± 0.0696 0.787

Table E.39: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0801± 0.0714 1.12
XY 0.1351± 0.0718 1.87
XZ 0.0429± 0.0690 0.621
Y Z 0.0805± 0.0694 1.16

Table E.40: Amplitude extracted from µ+3-jets tt̄ candidates, with phase fixed ap-
propriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0801± 0.0714 1.12
XY -0.1351± 0.0718 1.87
XZ -0.0682± 0.0685 0.994
Y Z 0.0597± 0.0699 0.854
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E.6 `+>3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.6 `+>3-jets in Run IIb
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Figure E.6: Number of `+>3-jets tt̄ candidates per two sidereal hours, Run IIb.
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E.6 `+>3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.6.1 Electron amplitudes

Table E.41: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0614± 0.0868 0.707
XY -0.0360± 0.0872 0.413
XZ -0.0151± 0.0829 0.182
Y Z 0.0150± 0.0853 0.175

Table E.42: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0614± 0.0868 0.707
XY 0.0360± 0.0872 0.413
XZ 0.0172± 0.0835 0.206
Y Z -0.0123± 0.0846 0.146

Table E.43: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.0614± 0.0868 0.707
XY 0.0360± 0.0872 0.413
XZ 0.0216± 0.0856 0.252
Y Z -0.0043± 0.0826 0.0518

Table E.44: Amplitude extracted from e+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.0614± 0.0868 0.707
XY -0.0360± 0.0872 0.413
XZ -0.0164± 0.0832 0.196
Y Z 0.0135± 0.0849 0.159
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E.6 `+>3-jets in Run IIb E. Fit Results: Run IIa and Run IIb

E.6.2 Muon amplitudes

Table E.45: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cR)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1078± 0.0960 1.13
XY -0.0139± 0.0964 0.145
XZ 0.1133± 0.0918 1.23
Y Z 0.0102± 0.0943 0.108

Table E.46: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming (cL)µν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1078± 0.0960 1.13
XY 0.0139± 0.0964 0.145
XZ -0.1133± 0.0924 1.22
Y Z -0.0243± 0.0936 0.259

Table E.47: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming dµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX 0.1078± 0.0960 1.13
XY 0.0139± 0.0964 0.145
XZ 0.0399± 0.0928 0.43
Y Z -0.1103± 0.0933 1.18

Table E.48: Amplitude extracted from µ+>3-jets tt̄ candidates, with phase fixed
appropriate to each coefficient case and assuming cµν = 0.

Coefficient Case Amplitude±Uncertainty Significance (sd)
XX -0.1078± 0.0960 1.13
XY -0.0139± 0.0964 0.145
XZ 0.1133± 0.0921 1.23
Y Z 0.0172± 0.0939 0.183
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E.7 Agreement across samples E. Fit Results: Run IIa and Run IIb

E.7 Agreement across samples

Table E.49: The values of χ2 and probability reflecting consistency with no time
dependence for the 12 independent measurements of amplitudes of sidereal oscillations
in all channels (`+n-jets, where ` = e, µ and n = 2, 3,≥ 4 divided into Run IIa and
Run IIb) for each of the 16 phases assumed in this analysis.

Phase Assumption χ2 (12 dof) Prob(χ2)

(cR)µν = 0 XX 19.162 0.085
XY 13.213 0.354
XZ 24.466 0.018
Y Z 16.467 0.171

(cL)µν = 0 XX 19.162 0.085
XY 13.213 0.354
XZ 21.456 0.044
Y Z 19.381 0.080

dµν = 0 XX 19.162 0.085
XY 13.213 0.354
XZ 13.903 0.307
Y Z 27.363 0.007

cµν = 0 XX 19.162 0.085
XY 13.213 0.354
XZ 22.821 0.029
Y Z 18.056 0.114
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F.1 e+>3-jets F. Data and Fits
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Figure F.1: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets tt̄ candidates,
for (cR)µν = 0: (a) (cL)XX , (b) (cL)XY , (c) (cL)XZ , (d) (cL)Y Z .
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F.1 e+>3-jets F. Data and Fits
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Figure F.2: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets tt̄ candidates,
for (cL)µν = 0: (a) (cR)XX , (b) (cR)XY , (c) (cR)XZ , (d) (cR)Y Z .
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F.1 e+>3-jets F. Data and Fits
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Figure F.3: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets tt̄ candidates,
for dµν = 0: (a) cXX , (b) cXY , (c) cXZ , (d) cY Z .
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F.1 e+>3-jets F. Data and Fits
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Figure F.4: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets tt̄ candidates,
for cµν = 0: (a) dXX , (b) dXY , (c) dXZ , (d) dY Z .
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F.2 µ+>3-jets F. Data and Fits

F.2 µ+>3-jets
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Figure F.5: Fitted fSME(φi) (line) and observed Ri (crosses), µ+>3-jets tt̄ candidates,
for (cR)µν = 0: (a) (cL)XX , (b) (cL)XY , (c) (cL)XZ , (d) (cL)Y Z .
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F.2 µ+>3-jets F. Data and Fits

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
1DØ, 5.3 fb

channelµ / tt

(a)

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
1DØ, 5.3 fb

channelµ / tt

(b)

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
1DØ, 5.3 fb

channelµ / tt

(c)

πSidereal Phase / 2
0 0.25 0.5 0.75 1

R

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
1DØ, 5.3 fb

channelµ / tt

(d)

Figure F.6: Fitted fSME(φi) (line) and observed Ri (crosses), µ+>3-jets tt̄ candidates,
for (cL)µν = 0: (a) (cR)XX , (b) (cR)XY , (c) (cR)XZ , (d) (cR)Y Z .

181



F.2 µ+>3-jets F. Data and Fits
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Figure F.7: Fitted fSME(φi) (line) and observed Ri (crosses), µ+>3-jets tt̄ candidates,
for dµν = 0: (a) cXX , (b) cXY , (c) cXZ , (d) cY Z .
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F.2 µ+>3-jets F. Data and Fits
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Figure F.8: Fitted fSME(φi) (line) and observed Ri (crosses), µ+>3-jets tt̄ candidates,
for cµν = 0: (a) dXX , (b) dXY , (c) dXZ , (d) dY Z .
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F.3 Simultaneous e+>3-jets and µ+>3-jets F. Data and Fits
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Figure F.9: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets and µ+>3-
jets tt̄ candidates, for (cR)µν = 0:
(a) (cL)XX (e+jets), (b) (cL)XX (µ+jets), (c) (cL)XY (e+jets), (d) (cL)XY (µ+jets),
(e) (cL)XZ (e+jets), (f) (cL)XZ (µ+jets), (g) (cL)Y Z (e+jets), (g) (cL)Y Z (µ+jets).
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F.3 Simultaneous e+>3-jets and µ+>3-jets F. Data and Fits
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Figure F.10: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets and µ+>3-
jets tt̄ candidates, for (cL)µν = 0:
(a) (cR)XX (e+jets), (b) (cR)XX (µ+jets), (c) (cR)XY (e+jets), (d) (cR)XY (µ+jets),
(e) (cR)XZ (e+jets), (f) (cR)XZ (µ+jets), (g) (cR)Y Z (e+jets), (g) (cR)Y Z (µ+jets).
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F.3 Simultaneous e+>3-jets and µ+>3-jets F. Data and Fits
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Figure F.11: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets and µ+>3-
jets tt̄ candidates, for dµν = 0:
(a) cXX (e+jets), (b) cXX (µ+jets), (c) cXY (e+jets), (d) cXY (µ+jets), (e) cXZ
(e+jets), (f) cXZ (µ+jets), (g) cY Z (e+jets), (g) cY Z (µ+jets).
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F.3 Simultaneous e+>3-jets and µ+>3-jets F. Data and Fits
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Figure F.12: Fitted fSME(φi) (line) and observed Ri (crosses), e+>3-jets and µ+>3-
jets tt̄ candidates, for cµν = 0:
(a) dXX (e+jets), (b) dXX (µ+jets), (c) dXY (e+jets), (d) dXY (µ+jets), (e) dXZ
(e+jets), (f) dXZ (µ+jets), (g) dY Z (e+jets), (g) dY Z (µ+jets).
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