
PULLBACK OF CURRENTS BY MEROMORPHIC MAPS

Tuyen Trung Truong

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Mathematics
Indiana University

June 2012



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Eric Bedford, Ph.D.

Chris Connell, Ph.D.

Norm Levenberg, Ph.D.

Kevin Pilgrim, Ph.D.

May 21, 2012

ii



Acknowledgements

It is my pleasure to thank my adviser, Eric Bedford, for his constant help and

support through my PhD studies. He has spent a lot of time since the beginning of

my study, working with me in various research projects, explaining the theories of

several complex variables and complex dynamics which were entirely new to me, and

getting me practice with mathematical writing and presenting.

In my study in Indiana University, I obtained a lot of help from many people in

the Department of mathematics to whom I am very grateful. In particular, I would

like to thank Norm Levenberg for always being willing to answer my questions or

listen to my (whatever insignificant !!) results or thoughts. I also wish to thank the

members of my graduate committee, Chris Connell and Kevin Pilgrim. I am indebted

to Greg Peters and Greg Kattner for helping with my teaching.

Besides the help from the department, I also received a lot of help from very

kind people in many other places, who I either met in person or contacted via email.

In particular, I would like to thank my coauthors Tien-Cuong Dinh and Viet-Anh

Nguyen; and thanks also to Dan Coman, Jean-Piere Demailly, Jeffrey Diller, Mattias

Jonsson, Roland Roeder, and Nessim Sibony.

I am very grateful to many many friends, who offered me suggestions, joy, help,...

whenever needed. It is very pitiful that I can list only a small number of their names

here: Judy Robinson and her family and the people in the North Central Church of

Christ, Hoai-Minh Nguyen, Hang Tien Nguyen, Phuc Cong Nguyen, Chun-yen Shen,

iii



Hung Vinh Tran, Lanh Tran, Neeraj Kashyap, Du Xuan Pham and Phuong Nguyen,

Loc Hoang Nguyen, Toan Trong Nguyen and Thanh Tran, Jan-li Lin, Thang Quang

Nguyen, Tri Lai and Thuy An, Jayampathy Ratnayake, Chuntian Wang...

Finally, I wish to thank my former teachers Duong Minh Duc, Dang Duc Trong

and Huynh Tan Chau, and my dear family who constantly support and believe in

me; and my lovely wife Hien who shares with me all good and bad moments in life.

iv



Tuyen Trung Truong

PULLBACK OF CURRENTS BY MEROMORPHIC
MAPS

My dissertation researches on properties of iterations fn = f ◦ f ◦ . . . ◦ f (n

times) of a selfmap f : X → X. Here X is a compact Kähler manifold and f is

a dominant meromorphic map. For holomorphic maps, a variational principle for

smooth maps proves the existence of a measure which is invariant under f and has

maximal entropy (i.e. the entropy of the measure equals the topological entropy).

The same question is harder to answer for a general meromorphic map f , due to the

fact that f is not continuous. Since the pioneer work of Bedford et al. on Hénon

maps, a common strategy is to first establish the existence of appropriate invariant

currents (a generalization of measures), and then use them to construct invariant

measures. To this end, it is important to know what currents can be pulled back or

pushed forward by a map f . In my dissertation, based upon a regularization theorem

of Dinh and Sibony, I give a definition of pulling back by a given meromorphic map

for a large class of currents. This pullback operator is compatible with the definitions

given by many other authors. Many applications and examples are given.
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CHAPTER 1

Introduction

The purpose of this dissertation is to define a meaningful pullback operator by

meromorphic maps for currents. The definition so defined has desired good properties,

is compatible with the definitions in previous works, and has applications to many

examples of complex dynamical systems.

Given X a compact Kähler manifold of dimension k and f : X → X a dominant

meromorphic map, complex dynamics studies dynamical objects associated to f such

as topological entropy, invariant measures, the distribution of periodic points,...

In the case k = 1, X is a complex curve. Then any meromorphic map f :

X → X is automatically a holomorphic map (because the indeterminacy set of f has

codimension ≥ 2 in X, and hence is empty since X has dimension 1). The theory of

smooth maps on compact manifolds ensures the existence of an invariant measure of

maximal entropy of f (see Newhouse [64]). Recall that a measure µ is invariant by f

if the pushforward f∗(µ) equals µ. When the topological degree of f is greater than

1 (i.e. when f is not an automorphism), a dynamical construction of the (unique)

invariant measure of maximal entropy can be given in terms of repelling periodic

points of f (see Brolin [18], Freie -Lopes - Mane [53] and Lyubich [62]).

Going up one dimension to the case k = 2, we face many difficulties which can

be illustrated by the examples of Hénon maps (which are among the most exten-

sively studied maps in two and higher dimensional, see e.g. Hubbard - Oberste Vorth

[59][60]). These are maps of the form f : C2 → C2, f(x, y) = (y, p(y) − δx), where

p is a polynomial of degree ≥ 2 and δ is a non-zero complex constant. These are

1



1. INTRODUCTION 2

automorphisms of C2, and we can lift them to birational maps on P2 ⊃ C2. Since the

topological degree of a Hénon map f is 1, the construction of an invariant measure

µ of maximal entropy can not be directly done as in dimension 1. Bedford-Lyubich-

Smillie [7][8][9][10] instead proceeded as follows: They first construct invariant pos-

itive closed (1, 1) currents T+ and T− for f and f−1, and the measure µ is defined

as the wedge product T+ ∧ T−. We see two obstacles needed to be overcome: 1)

We need to explain how to pullback positive closed (1, 1) currents and measures by

non-smooth maps; and 2) We need to define the wedge product of two positive closed

(1, 1) currents. The pullback of positive closed (1, 1) currents can be done by making

use of their local potentials, which are pluri-subharmonic functions (see Meo [63]).

The local potentials of T+ and T− on C2 are continuous, hence the theory of Bedford-

Taylor [11] can be used to define the wedge product of them on C2. It turns out that

T+ and T− are regular enough, so we can define their wedge product even on P2.

Moreover, using dynamical properties, the resulting measure µ can be shown to have

no mass on pluri-polar sets. Therefore, µ can be pulled back by any meromorphic

map; and we can check that it is an invariant measure for the Hénon map in question.

There are now many works on constructing invariant measures and invariant pos-

itive closed (1, 1) currents (the so called Green currents) under variant dynamical

constraints, both in two and higher dimensions. (The following is only a small por-

tion of the current literature: [4], [6], [14], [15], [16], [17], [20], [21], [22], [25],

[26], [27], [28], [29], [30], [31], [32], [33], [34], [36], [37], [40], [41], [42], [44], [45],

[47], [48], [49], [50], [51], [52], [56], [57], [65], [67], [68].) As in the case of Hénon

maps, a common strategy to construct invariant measures for a dominant meromor-

phic maps consists of the following steps: 1) construct appropriate invariant positive

closed currents T+ and T− of complement degrees for the pullback and pushforward

of f ; 2) construct the measure µ as the wedge product T+ ∧ T−; and 3) show that
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the resulting measure µ has no mass on pluri-polar sets, and then check that it is an

invariant measure. All of these three steps impose very challenging technical difficul-

ties, and there are several recent works addressing one or several of these issues (see

Dinh-Sibony [42][43][44][45][46]). Among these three steps, Step 1 is most relevant

to the topic of this dissertation, so we will discuss it in some detail in the below.

When k ≥ 3, one of the currents T+ and T− in Step 1 must be of bidegree

higher than (1, 1), and pulling back such a current by a meromorphic map may

be problematic. In contrast to the case of bidegree (1, 1), it is not always able to

pullback a positive closed current of higher bidegrees even by a holomorphic map: If

π : X → Y is the blowup of a three-fold Y along a smooth curve C ⊂ Y , what can

be the pullback by the map π of the current of integration on C? Hence we can see

that understanding what currents can be pulled back by a given meromorphic map

is useful for constructing invariant measures and more generally invariant currents of

that map.

There are several works on pulling back currents of higher bidegrees (see Allesan-

drini -Bassnelli [2], the cited papers of Dinh and Sibony, and Russakovskii - Shiffman

[67]). In these definitions, if T is a positive closed current which can be pulled

back by a meromorphic map f , then the resulting current f ∗(T ) is again positive

closed. Such a conservation of positivity is expected under some meaningful dy-

namical constraints on f , for example when f has one dynamical degree strictly

greater than the others. (However, there are many interesting examples of pseudo-

automorphisms on blowups of P3 whose first and second dynamical degrees are the

same (see Bedford - Kim [5], Perroni - Zhang [66] and Blanc [12]); and this phenom-

enon of having no strictly dominant dynamical degree may be prevalent for pseudo-

automorphisms on these manifolds as evidenced by the case of automorphisms, see

[70].) Let us illustrate that this conservation of positivity fails for the following
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very simple pseudo-automorphism on blowups of P3. Let J : P3 → P3 be the map

[x0 : x1 : x2 : x3] → [1/x0 : 1/x2 : 1/x3 : 1/x4]. Let π : X → P3 be the blowup

of P3 at 4 points e0 = [1 : 0 : 0 : 0], e1 = [0 : 1 : 0 : 0], e2 = [0 : 0 : 1 : 0] and

e3 = [0 : 0 : 0 : 1]. Let JX = π−1 ◦ J ◦ π be the lift of J to X. Let Σi,j ⊂ P3 be the

line connecting ei and ej, and let Σ̃i,j be its strict transform in X. We see that in

cohomology J∗X{Σ̃0,1} = −{Σ2,3}. Therefore, whatever a meaningful pullback of the

current of integration [Σ̃0,1] we give for the map JX , the resulting J∗X [Σ̃0,1] can not be

a positive current.

The goal of my dissertation is to define a meaningful pullback operator for mero-

morphic maps, so that it is both compatible with previous definitions and applicable

to ”abnormal” cases like the map JX . The main idea is to use duality and regu-

larization of currents in defining pullback. We consider the more general setting of

f : X → Y a dominant meromorphic map between compact Kähler manifolds X

and Y . Let T be a (p, p) current on Y . Assume that we can pullback T by f , and

the resulting f ∗(T ) is a (p, p) current on X. Then for a smooth form α on X of

appropriate bidegrees, we should have

∫
X

f ∗(T ) ∧ α =

∫
Y

T ∧ f∗(α).

(The pushfoward f∗(α) of a smooth form α is well-defined for any meromorphic map

f . However, it may not be smooth, even when f is holomorphic.) Thus the mysterious

current f ∗(T ) is understood if we can make sense of the action of the current T on the

currents f∗(α) for all smooth forms α. Since Y is compact, the current T is of a finite

order s. Since the current f∗(α) is DSH, we can use a regularization result of Dinh

and Sibony to produce approximations of f∗(α) by Cs forms with good properties.

This enables us to define
∫
Y
T ∧ f∗(α) using limits.
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The details of the definition including the notion of DSH currents will be given in

the subsequent chapters. We close this chapter by explaining what we obtain when

applying the definition to our friend the map JX . The ”critical set” of the map JX has

dimension 1, hence for any positive closed (2, 2) current T on X, J∗X(T ) is well-defined.

Moreover, J∗X [Σ̃0,1] = −[Σ̃2,3], which is compatible to the pullback on cohomology

level. Even more specially, the map JX enjoys what we call ”2-analytic stable”. This

means that for any positive closed (2, 2) current T , (J∗X)2(T ) = (J2
X)∗(T ) = T . The

latter property enables us to construct invariant (2, 2) currents for the map JX .



CHAPTER 2

Preliminary results

This chapter presents some fundamental notions and results of complex analysis,

differential geometry and complex dynamics used in the main chapter. Most of the

results will be stated without proofs or with sketches of the proofs only, but references

will be given for the convenience of the readers.

1. d and dc operators on complex manifolds

The main references for this section is Chapter 1 in the book of Demailly [23] and

Chapter 0 in the book of Griffiths - Harris [54].

Let C be the complex plane and let Cn be the n-dimensional complex space. We

use complex coordinates z1, z2, . . . , zn for Cn. If we write zj = xj+iyj where xj, yj ∈ R

and i2 = −1 then x1, y1, . . . , xn, yn comprises real coordinates for Cn.

Let Ω be an open set in Cn. Then Ω is a complex manifold of dimension n and is

a real manifold of dimension 2n. At a point in Ω, the tangent vector space TΩ has a

natural structure of the complex vector space Cn. We denote by TR
Ω the underlying

real tangent space. It admits (∂/∂x1, ∂/∂y1, . . . , ∂/∂xn, ∂/∂yn) as a basis. The almost

complex structure J on TR
Ω is given by J(∂/∂xk) = ∂/∂yk and J(∂/∂yk) = −∂/∂xk

for k = 1, . . . , n.

The complexified tangent space C ⊗ TΩ = C ⊗R T
R
Ω = TR

Ω ⊕ iTR
Ω admits a basis

consisting of vectors

∂

∂zk
=

1

2
(
∂

∂xk
− i ∂

∂yk
),

∂

∂zk
=

1

2
(
∂

∂xk
+ i

∂

∂yk
)

6



2. PRELIMINARY RESULTS 7

for k = 1, 2, . . . , n. Note that

IdC ⊗ J(
∂

∂zk
) = i

∂

∂zk
,

IdC ⊗ J(
∂

∂zk
) = −i ∂

∂zk
.

The vector subspace generated by the vectors ∂/∂zk is denoted by T 1,0
Ω (holomorphic

vectors or vectors of type (1, 0)), and the vector subspace generated by the vectors

∂/∂zk is denoted by T 0,1
Ω (anti-holomorphic vectors or vectors of type (0, 1)).

We then have a canonical decomposition C⊗ TΩ = T 1,0
Ω ⊕ T 0,1

Ω ∼ TΩ ⊗ TΩ via the

isomorphisms

ξ ∈ TΩ 7→
1

2
(ξ − iJξ) ∈ T 1,0

Ω ,

ξ ∈ TΩ 7→
1

2
(ξ + iJξ) ∈ T 0,1

Ω .

Here TΩ has complex structure −J and thus is conjugate to TΩ.

By duality, we have a corresponding decomposition for (complex valued) 1-forms

on Ω:

HomR(TR
Ω ,C) ≡ HomC(C⊗ TR

Ω ,C) ≡ T ∗Ω ⊕ T ∗Ω.

More specifically, (dx1, dy1, . . . , dxn, dyn) is a basis for HomR(TR
Ω ,C), (dz1, . . . , dzn)

is a basis for T ∗Ω, and dz1, . . . , dzn is a basis for T ∗Ω. If f : Ω → C is a C1 function

then we can write

df =
n∑
k=1

(
∂f

∂xk
dxk +

∂f

∂yk
dyk) =

n∑
k=1

(
∂f

∂zk
dzk +

∂f

∂zk
dzk).

A map f is called a holomorphic map if ∂f/∂zk = 0 for every k = 1, . . . , n. From

the above formula, f is holomorphic iff df is C-linear.

Now we discuss a generalization of splitting the exterior differential d acting on

forms of higher degrees. The complexified exterior algebra C⊗RΛ∗R(TR
Ω )∗ = Λ∗C(C⊗T ∗Ω)
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is decomposed as follows:

Λk(C⊗ TΩ)∗ = Λk(TΩ ⊕ TΩ)∗ =
⊕
p+q=k

Λp,qT ∗Ω.

Here

Λp,qT ∗Ω = ΛpT ∗Ω ⊗ ΛqT ∗Ω,

consisting of smooth differential forms of bidegree (or type) (p, q). For s ≥ 0 and an

open subset U of Ω, we denote by Cs(U,Λp,qTΩ) the class of Cs forms of type (p, q)

on U . Such a form can be written as

u(z) =
∑

|I|=p,|J |=q

uI,J(z)dzI ∧ dzJ .

Here I = (i1, . . . , ip) and J = (j1, . . . , jq) are multiple indices, dzI = dzi1 ∧ . . . ∧ dzip
and dzJ = dzj1 ∧ . . . ∧ dzjq , and u : U → C is a function of class Cs. The exterior

d : ΛkT ∗Ω → Λk+1T ∗Ω splits into d = d′ + d”, where d′ : Λp,qT ∗Ω → Λp+1,qT ∗Ω and

d” : Λp,qT ∗Ω → Λp,q+1T ∗Ω are given by:

d′u =
∑
I,J

∑
1≤k≤n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ ,

d”u =
∑
I,J

∑
1≤k≤n

∂uI,J
∂zk

dzk ∧ dzI ∧ dzJ

for a smooth differential form u =
∑
|I|=p,|J |=q uI,J(z)dzI ∧ dzJ .

The identity 0 = d2 = (d′ + d”)2 = (d′)2 + d′d” + d”d′ + (d”)2 implies by taking

into account the bidegrees that 0 = (d′)2 = (d”)2 = d′d” + d”d′.

We define dc = 1
2πi

(d′ − d”). Then dc is a real operator, i.e. dcu = dcu for smooth

forms u. Moreover, ddc = i
π
d′d”.

These considerations can be developed for complex manifolds. Recall that a com-

plex manifold X of dimension n is a differentiable manifold equipped with a holomor-

phic atlas τα. This means that there is a covering Uα of X, open sets Vα ⊂ Cn, and



2. PRELIMINARY RESULTS 9

homeomorphisms τα : Uα → Vα such that the transition maps

τα,β = τα ◦ τ−1
β : τβ(Uα ∩ Uβ)→ τα(Uα ∩ Uβ)

are holomorphic maps. A (local) (p, q) form on Uα is given by a (p, q) form uα of

type (p, q) on Vα. Two local (p, q) forms uα and uβ are compatible if we have the

identity uβ = τ ∗α,β(uα) on the intersection Uα ∩ Uβ. If two local forms uα and uβ are

compatible, then they define a form u on the larger set Uα∪Uβ, and this construction

can be extended to define forms on any open set U of X.

2. Currents

2.1. Currents on differentiable manifolds. The main references for this sub-

section is the books de Rham [24] and Demailly [23].

a) Currents:

Let X be a smooth differentiable manifold of real dimension n. Let Ω ⊂ X

be a coordinate open set, i.e. Ω is diffeomorphic to an open subset of Rn, with

coordinates x1, . . . , xn. Let u be a smooth p form on Ω, then we can write u(x) =∑
|I|=p uI(x)dxI . Here I = (i1, . . . , ip) is a multi-index, uI(x) is a smooth function,

and dxI = dxi1 ∧dxi2 ∧ . . .∧dxip . To a compact set L ⊂ Ω and an integer s we define

a seminorm

psL(u) = sup
x∈L

max
|α|≤s
|Dαu(x)|.

That is, the seminorm is defined as supremum on L of all the derivatives Dα of

multi-indexes α = (α1, . . . , αm) with |α| = m ≤ s.

On the space Ep(X) of global smooth p forms on X, we equip the topology defined

by all semi-norms psL when s, L, and Ω vary. Then we define Dp(X) to be the subspace

of Ep(X) consisting of smooth forms of compact supports.
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A current T of dimension p (or degree n-p) is a linear functional on Dp(X) so that

for each subspace K ⊂⊂ X then the restriction of T to Dp(K) is continuous. If T is

a current of dimension p and ϕ is a test p form then we denote by 〈T, ϕ〉 the action

of T on ϕ. We also define the action of T on ϕ by the notation
∫
X
T ∧ ϕ.

Similarly, we can equip the space Eps (X) of Cs forms with the semi-norms psL where

L and Ω vary, and then let Dps(X) to be the subspace of Cs forms with compact

support. Then a current T that acts continuously on Dps(X) is called a current of

order s.

Lemma 2.1. Let X be a compact manifold, and let T be a current on X. Then T

is of finite order, i.e. there is an integer s ≥ 0 so that T is of order s.

Proof. (Sketch) Assume otherwise. Then there are smooth forms ϕj on X so

that ||ϕj||Cj = 1 and |〈T, ϕj〉| ≥ j for all j = 1, 2, . . .. By Arzela-Ascoli theorem,

there is a smooth form ϕ which is the limit point of a fixed subsequence of ϕj in any

Ck topology. Since T is a current, it follows that the finite number |〈T, ϕ〉| is the

limit of the corresponding subsequence of |〈T, ϕj〉|, and the latter is infinite. This is

a contradiction.

�

On the space of currents, we equip the weak topology. Hence if Tn and T are

currents, we say that Tn converges to T and denote by Tn ⇀ T if for any test form ϕ

then 〈Tn, ϕ〉 converges to 〈T, ϕ〉.

Example 1: If T is a q form whose coefficients are locally L1, then T defines a

current of dimension n− q (and of degree q) as follows: If ϕ is a test form then

〈T, ϕ〉 :=

∫
X

T ∧ ϕ.

The current defined this way is of order 0, i.e. it can act on continuous forms.
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Example 2: If Z is an oriented closed submanifold of dimension p of X, then we

define the current of integration [Z] of dimension p as follows: If ϕ is a test form then

〈[Z], ϕ〉 :=

∫
Z

ϕ|Z .

Then [Z] is a current of order 0.

b) Wedge product and exterior derivative of currents:

Wedge product: If T is a current of degree p and ψ is a smooth form of degree q,

then we define the wedge product T ∧ ψ to be the current of degree p+ q which acts

on test forms ϕ as follows: 〈T ∧ ψ, ϕ〉 := 〈T, ϕ ∧ ψ〉.

Exterior derivative: If T is a current of dimension q and of order s, then we define

dT to be the current of dimension q − 1 and of order s+ 1 as follows: If u is a Cs+1

test form of degree q − 1 then 〈dT, u〉 := (−1)n−q+1〈T, du〉. A current T is closed if

dT = 0.

Example 1: If f is a C1 form then the exterior derivatives of f , both as a C1 form

and as a current, are the same.

Example 2: If Z is an oriented submanifold of dimension p of X with boundary

∂Z then by Stokes theorem we see that d[Z] = (−1)n−p+1[∂Z].

Example 3: If T is a distribution then it is a current of degree zero.

c) Push-forward (or direct image) of currents by proper maps: Let f : X → Y

be a smooth map between smooth manifolds. Let T be a current on X of dimension

p and of order s. Assume that the restriction of f to Supp(T ) is proper, i.e. for

any compact set K ⊂ Y then f−1(K) ∩ Supp(T ) is compact. Then we define the

push-forward (or direct image) f∗(T ), which is a current on Y of dimension p and

order s, as follows: If ϕ is a test form then 〈f∗(T ), ϕ〉 := 〈T, f ∗(ϕ)〉.

Remark that the push-forward and the exterior derivative are commutative to

each other, i.e. d(f∗(T )) = f∗(dT ).
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d) Pull-back of currents by submersions: Assume that f : X → Y is a submersion,

i.e. f is surjective and the derivative dxf : TX,x → TY,f(x) is surjective as well. For

a current T on Y of degree p and of order s, we define f ∗(T ) as a current on X of

degree p and of order s as follows: 〈f ∗(T ), ϕ〉 := 〈T, f∗(ϕ)〉 for test forms ϕ.

e) Trivial extension of currents of order zero

Proposition 2.1. Let x1, . . . , xn be a coordinate system of an open set Ω ⊂ X.

Every current T on X of degree q and of order s can be written in a unique way as

T =
∑
|I|=q

TIdxI

on Ω, where TI are distributions of order s on Ω.

Proof. (Sketch, see Proposition 2.9 Chapter 1 in Demailly’s book) The TI are

defined as follows: Let J be a multi-set with |J | = n − q so that its underlying

set is the complement of I in the set {1, 2, . . . , n}, and dxI ∧ dxJ defines the same

orientation as dx1∧ . . .∧dxn. Then for a smooth function f on Ω of compact support

we define

〈TI , f〉 := 〈T, fdxJ〉.

�

Now let C ⊂ X be a closed subset, and let X ′ = X − C. Let T be a current on

X ′ of degree q and of order zero. Then by Proposition 2.1, locally we can write

T =
∑
|I|=q

TIdxI ,

where TI are distribution of order zero, and hence are complex-valued measures by

Riesz representation theorem. Assume now that all the TI has locally finite mass

near C. Then we can trivially extend these measures to measures T̃I defined on X,

by declaring T̃I(A) = TI(A − C) for a Borel set A ⊂ X. The current, which defined
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locally as

T̃ =
∑
|I|=q

T̃IdxI

is a well-defined current on X of degree q and of order zero. By definition, if ϕ is a

smooth form of compact support contained in X − C, then 〈T̃ , ϕ〉 = 〈T, ϕ〉. We call

T̃ the trivial extension of T across C.

2.2. Currents on complex manifolds. On a complex manifold, Lelong defined

the notion of positive currents, which are very useful in complex dynamics. The main

references are the books Lelong [61] and Demailly [23].

a) Positive currents:

Let X be a complex manifold of dimension n. A smooth (p, p) form v on X is said

to be strongly positive if locally we can write

v(z) =
∑
s

γs(z)iαs,1(z) ∧ αs,1(z) ∧ . . . ∧ iαs,p(z) ∧ αs,p(z),

where γs(z) ≥ 0 and αs,j(z) are (1, 0) forms.

A smooth (p, p) form u on X is said to be positive if for any strongly positive

(n− p, n− p) then u ∧ v is a positive (n, n) form (i.e. a positive measure).

Kähler manifold: Let X be a complex manifold. A Kähler (1, 1) form ω on X

is a strictly positive closed (1, 1) form ω. That is, ω is positive, ω is nowhere zero,

and dω = 0. If X has a Kähler form then X is a Kähler manifold.

A (p, p) current T is positive if for any strongly positive test form α then 〈T, α〉 ≥ 0.

Likewise, a (p, p) current T is strongly positive if for any positive test form then

〈T, α〉 ≥ 0.

Lemma 2.2. A positive current T is a current of order 0.

Proof. (Sketch) By definition, we need to show that for any compact set K ⊂ X,

there is a constant CK > 0 so that for any smooth form ϕ on X with support in K
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then |〈T, ϕ〉| ≤ CK ||ϕ||L∞ . By using a partition of unity, we may assume that K is

contained in a coordinate open set Ω ⊂ X. Let z1, . . . , zn be a coordinate system on

Ω. Consider a non-negative smooth function λ on X so that support of λ is contained

in Ω, and λ = 1 on an open neighborhood of K. Then there is a constant C > 0

independent of ϕ so that C||ϕ||L∞ωq ± ϕ are strongly positive smooth forms, here

ω = λ(idz1 ∧ dz1 + . . .+ idzn ∧ dzn) and (n− q, n− q) is the bidegree of T . Since T

is a positive current, we have |〈T, ϕ〉| ≤ CK ||ϕ||L∞ , where CK = C〈T, ωq〉. �

If X is in addition a compact Kähler manifold with a Kähler (1, 1) form ωX , then

we define the mass of a positive (p, p) current T as ||T || := 〈T, ωn−pX 〉. Similarly, if T

is a negative current (i.e −T is a positive current) then we define the mass of T to

be the mass of −T .

b) Positive closed currents-Lelong numbers: If a (p, p) current T is both positive

and closed (i.e. dT = 0) then we say that it is a positive closed current. Note that

if T is a positive closed current, then the mass of T (defined above) depends only on

the cohomology class of T .

We can assign to a positive closed current T its Lelong number, which can be

defined locally as follows: Let X be an open subset in Cn and let z1, . . . , zn be

coordinates of Cn. For a point z = (z1, . . . , zn) ∈ Cn we define |z|2 = |z1|2 + . . . |zn|2

the square of its Euclidean norm. Let T be a positive closed current of bidimension

(p, p) on X. For a ∈ X, we define the Lelong number ν(T, a) of T at a by the following

formula

ν(T, a) = lim
r→0

1

r2p

∫
|z−a|<r

T ∧ (
i

2π
d′d”|z|2)p.

Example 1: If ϕ is a local L1 function on X which is upper-semicontinuous and

so that ddcϕ ≥ 0, then we say that ϕ is a pluri-subharmonic function (or PSH for

short). When ϕ is a PSH function then T = ddcϕ is a positive closed (1, 1) current.
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Its Lelong numbers can be computed by the formula

ν(T, x) = lim inf
z→x

ϕ(z)

log |z − x|
.

Example 2: Let Z be an irreducible subvariety of dimension p of X. and let

Zreg be the regular set of Z. Then Z defines a strongly positive closed current of

bidimension (p, p), called the current of integration on Z, denoted by [Z] as follows:

If ϕ is a smooth test form then

< [Z], ϕ >:=

∫
Zreg

ϕ|Zreg .

If x ∈ X −Z then ν([Z], x) = 0, while if x ∈ Z then ν([Z], x) = the multiplicity of Z

at x (Thie’s theorem).

Proof. (Sketch, see Theorem 7.7 page 168 in Demailly’s book) Use the compar-

ison theorems for Lelong’s numbers. �

c) DSH currents: DSH currents were introduced by Dinh and Sibony to assist

the study of complex dynamics. We briefly recall the definition here, please see [39]

for more details.

Let X be a compact Kähler manifold. A (p, p) current T is DSH if there are

positive (p, p) currents T1 and T2, and for some positive closed (p+ 1, p+ 1) currents

Ω±i (for i = 1, 2) so that T = T1−T2 and ddcTi = Ω+
i −Ω−i . For a DSH (p, p) current

T , we define its DSH norm as

||T ||DSH = min{||T1||+ ||T2||+ ||Ω+
1 ||+ ||Ω+

2 ||}

where the minimum is taken on all currents T1, T2,Ω
±
1 ,Ω

±
2 as above.

We say a sequence of DSH (p, p) currents Tn converge to a current T in DSH if

Tn weakly converges to T in the sense of currents and ||Tn||DSH is uniformly bounded.

2.3. Support theorems for currents. Let X be a complex manifold.
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a) Support theorem for normal currents: We say that a current T is normal if

both T and dT are of order 0.

Theorem 2.1. Let T be a normal current of bidimension (p, p). If support of T

is contained in an analytic set A of dimension < p then T = 0.

Proof. (Sketch, see Theorem 2.10 Chapter 3 in Demailly’s book [23])

The regular part Areg of A is a complex submanifold of X − Asing of dimension

< p. The current Treg = T |X−Asing
has support in Areg. The problem being local, we

consider a coordinate open set Ω of X −Asing. Let g1, . . . , gm be real C1 functions on

Ω such that Areg ∩Ω = {x ∈ Ω : g1(x) = . . . = gm(x) = 0} and dg1∧ . . .∧dgm 6= 0 on

Ω. The rank of the matrix (d′gk) is at least n−p+1 at any point of Areg∩Ω. Therefore

we can choose a continuous frame (ζ1, . . . , ζn) of (1, 0) forms on Ω so that at least

n−p+ 1 of them are in the set (d′gk). Then gkT |X−Asing
= gk∧d′T |X−Asing

= 0 on Ω.

It follows that d′gk ∧ T |X−Asing
= 0. From this we can conclude that T |X−Asing

= 0,

which implies that T has support in Asing.

Now Asing has smaller dimension than A, we may use the above argument with

A replaced by Asing and induction on the dimension of A to deduce that T = 0 on

X. �

b) Siu’s decomposition theorem: Let T be a positive closed (p, p) current on X.

If c > 0 then the set Ec(T ) = {x ∈ X : ν(T, x) ≥ c} is an analytic subset of X of

codimension ≥ p (it may be an empty set).

Proof. See Siu’s paper [69] and Theorem 8.16 Chapter 3 in the book of Demailly

[23]. �

In particular, there are (at most countable) irreducible subvarieties Vj of codimen-

sion p, positive numbers λj, and a positive closed (p, p) current R for which Ec(R)
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has codimension > p for all c > 0, so that we have a decomposition

T = R +
∑
j

λj[Vj].

c) C-normal currents: The class of C-normal currents was studied by Bassanelli

[3]. A current T is C-normal if T and ddcT are both of order zero. Hence the class of

C-normal currents includes the class of DSH currents. As such, C-normal currents

are very useful in complex dynamics.

The class of C-normal currents is contained in the class of more general objects

called C-flat currents. A current T is C-flat if locally it can be written as T =

F + ∂G+ ∂H where F,G,H are L1
loc currents.

Bassanelli proved the following results:

Theorem 2.2. Let T be a C-flat current of bidimension (p, p). If support of T

has Hausdorff 2p-dimension zero then T = 0.

Proof. (Sketch, see Theorem 1.13 in the cited Bassanelli’s paper.) The main

idea to consider the projection of φT to complex subspaces of dimension p where φ is

a smooth function of compact support, using that under these projections then the

image of a C-flat current is again C-flat. �

Proposition 2.2. Let C be a closed subset of X and let T be a C-flat current on

X − C with locally finite mass across C. Then its trivial extension T 0 is C-flat on

X.

Proof. (Sketch, see Proposition 1.22 in the cited paper of Bassanelli) Let φn

be an increasing sequence of smooth functions such that 0 ≤ φn ≤ 1, φn = 0 in a

neighborhood of C and the limit of φn is 1 in Ω−C. Then show that T 0 is the limit

of φnT in the mass norm. �
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3. Cohomology groups

Let X be a compact Kähler manifold. Please see the books of de Rham [24],

Griffiths-Harris [54] and Demailly [23] for more detail.

3.1. de Rham cohomology. Recall that a smooth form ϕ is closed if dϕ = 0,

and it is exact if ϕ = dψ for some smooth form ψ. The de Rham p-th cohomology of

X is defined as

Hp
DR(X) =

{closed smooth p forms}
{exact smooth p forms}

.

de Rham theorem says that de Rham cohomology Hp
DR(X) is the same as the

singular cohomology Hp(X).

Proof. (Sketch, see page 44 in the book of Griffiths and Harris): Let Aq be the

sheaf of smooth q forms on X, and let R be the sheaf of locally constant functions on

X. Then by Poincare lemma for the operator d, we have a LES:

(1) 0→ R→ A0 → A1 . . .

here each map in the sequence is the exterior differential d. Then the singular coho-

mology is the Cech cohomology of the constant sheaf R. The latter is the same as

the de Rham cohomology of X, as can be seen via the SES’s

0→ R→ A0 → Z1 → 0, ...

which are deduced from the above LES. �

Similarly, if in the definition of de Rham cohomology we use the sheaves of currents

on X, then Poincare lemma for currents can be used to prove its isomorphism to the

singular cohomology.



2. PRELIMINARY RESULTS 19

3.2. Dolbeault cohomology. Similarly as above we define the notations of ∂

closed and exact forms and currents. Then we define Dolbeault cohomology groups

as follows:

Hp,q

∂
(X) =

{∂ closed smooth (p, q) forms}
{∂ exact smooth (p, q) forms}

.

Dolbeault theorem identifies the Dolbeault cohomology group Hp,q(X) and the

sheaf cohomology Hq(X,Ωp). Here Ωp is the sheaf of holomorphic p-forms. The proof

is similar to the proof of de Rham theorem (see page 45 in the book of Griffiths and

Harris), using Poincare lemma for the ∂ and the LES

0→ Ωp → Ap,0 → Ap,1 → . . . ,

here Ap,q is the sheaf of smooth (p, q) forms on X.

Similarly, Dolbeault cohomology can be computed using currents instead of smooth

forms.

3.3. Hodge decomposition theorem for compact Kähler manifolds.

Hk
DR(X) =

⊕
p+q=k

Hp,q

∂
(X).

For a proof, see page 116 in the book of Griffiths and Harris.

3.4. ddc lemma for compact Kähler manifolds. Let T be a real smooth (p, p)

form on X. If the cohomology class {T} is zero in Hp,p(X), then there exists a real

smooth (p− 1, p− 1) form ψ so that T = ddcψ. Similarly, if T is a real (p, p) current

whose cohomology class is zero, then there is a real (p − 1, p − 1) current R so that

T = ddcR. For a proof of this fact, see Lemma 8.6 page 311 in Demailly’s book.

4. Meromorphic maps and dynamical degrees

Let X and Y be compact Kähler manifolds. Let πX , πY : X × Y → X, Y be the

projections.
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4.1. Meromorphic maps. Following Remmert, we define a meromorphic map

f : X → Y to be an analytic variety Γf ⊂ X × Y (the graph of f) which is mapped

properly onto X by the projection πX such that outside a proper analytic subset

Z ⊂ X, this map is biholomorphic. Moreover π−1
X (Z) has to be nowhere dense in Γf .

Note that there is an (Zariski) open dense set U ⊂ X for which f |U : U → Y is a

true holomorphic map, and the closure of the graph of f |U is exactly Γf .

The map f is dominant if πY (Γf ) = Y . With the same set U in the previous

paragraph, this means that f |U(U) is dense in Y .

Composition of two dominant meromorphic maps: Let f : X → Y and g : Y → Z

be two dominant meromorphic maps. Then we can define their composition h = g ◦f

to be a dominant meromorophic map from X to Z in the following way: there are

open dense sets U ⊂ X and V ⊂ Y so that f |U and g|V are holomorphic maps, and

fU(U) is dense in Y . Then f |−1
U (V ) is dense in X, and g|V ◦f |f |−1

U (V ) is a holomorphic

map from X onto a dense subset in Z. The closure of the graph of this map is an

analytic variety Γh which defines a dominant meromorphic map h : X → Z.

Define τ : X×Y → Y ×X be the map τ(x, y) = (y, x). The map f is bimeromor-

phic if the variety τ(Γf ) of Y ×X also defines a meromorphic map from Y → X. We

denote the map corresponding with τ(Γf ) by f−1. This notation is justified by the

fact that f ◦ f−1 = IdY and f−1 ◦ f = IdX , here the compositions are in the sense of

meromorphic maps as defined in the previous paragraph.

4.2. Pullback of smooth forms and of cohomology classes. Let f : X → Y

be a dominant meromorphic map of compact Kähler manifolds. Let Γf be the graph

of the map f .

Let α be a smooth (p, q) form on Y . We define a pullback f ∗(α), which is a (p, q)

current on X, by the following formula: f ∗(α) = (πX)∗([Γf ] ∧ π∗Y (α)).
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It can be checked that if α is a closed or exact form then f ∗(α) is a closed or exact

current. Therefore the pullback on forms induces the pullback on cohomology groups

f ∗ : Hp,q(Y )→ Hp,q(X).

Similarly, the pushforward of a smooth form α is given by the formula f∗(α) =

(πY )∗([Γf ] ∧ π∗X(α)).

4.3. Dynamical degrees. Let f : X → X be a dominant meromorphic selfmap

of a compact Kähler manifold X, of dimension k. Let fn = f ◦ f . . . ◦ f be the n-th

iterate of f . We define dynamical degrees of f by one of the following two equivalent

ways:

Way 1: Let ωX be a Kähler (1, 1) form on X, and let 0 ≤ p ≤ k. Then the p-th

dynamical degree of f is given by

δp(f) = lim
n→∞

(

∫
X

(fn)∗ωpX ∧ ω
k−p
X )1/n.

Way 2: Let rp(f
n) be the spectral radius of the linear map (fn)∗ : Hp,p(X) →

Hp,p(X). Then

δp(f) = lim
n→∞

(rp(f
n))1/n.

The following result belongs to Dinh and Sibony [38][39]:

Theorem 2.3. The dynamical degrees are bimeromorphic invariants. This means

that if π : X → Y is a bimeromorphic map, f : X → X is a dominant meromophic

map and g = π ◦ f ◦ π−1 : Y → Y , then δp(f) = δp(g) for all 0 ≤ p ≤ k.

Some other properties of dynamical degrees:

If f is holomorphic then (fn)∗ = (f ∗)n : Hp,p(X) → Hp,p(X), and hence δp(f) =

rp(f). For general meromorphic map, the formula is not true.

δ0(f) = 1 and δk(f) =the topological degree of f , i.e. the number of inverse

images by the map f of a generic point in X.
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The function p→ δp(f) is log-concave. In particular, δp(f)2 ≥ δp−1(f)δp+1(f) for

all 1 ≤ p ≤ k − 1.

When X = Pk, then a meromorphic selfmap f of X is a rational map (Chow’s

theorem). Such a map f can be written as f(z) = [P0(z0, . . . , zk) : P1(z0, . . . , zk) :

. . . : Pk(z0, . . . , zk)] in homogeneous coordinates z = [z0 : z1 : . . . : zk]. Here the

functions Pj(z0, . . . , zk) are homogeneous polynomials of the same degree d, and the

largest common divisor of polynomials P0, . . . , Pk is 1. Then we call d the degree of f ,

and denote deg(f) = d. In this case, H1,1(Pk) has dimension 1, and f ∗ : H1,1(X) →

H1,1(X) is the multiplication by deg(f). Therefore δ1(f) = limn→∞ deg(fn)1/n, and

hence δ1(f) is also called the degree growth of f .

4.4. Entropy. Let f : X → X be a surjective holomorphic map. Let d be a

metric on X. A subset E of X is called (n, ε)-separated if for any pair x, y ∈ E then

max{d(f i(x), f i(y)) : 0 ≤ i ≤ n−1} ≥ ε. Denote by N(n, ε) the maximal cardinality

of an (n, ε)-separated set. Then the topological entropy of f is given by

htop(f) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε).

Gromov [55] and Yomdin [71] proved the following result, which relates the topo-

logical entropy of a holomorphic map to its dynamical degrees:

Theorem 2.4. If f : X → X is a surjective holomorphic map then

htop(f) = max
1≤p≤k

log δp(f).

If f is a meromorphic map, we can define in a similar fashion its topological

entropy, replacing X by Ωf = X −
⋃
n∈X f

n(If ), and replacing f by f |Ωf
(see e.g.

Guedj’s survey paper [56]). Here Ωf is not compact, and the metric on Ωf is induced

from that of X. However, the topological entropy such defined is not a bimeromorphic
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invariant (see the example below). Dinh and Sibony (see the cited papers) generalized

Gromov-Yomdin’s theorem as follows:

Theorem 2.5. If f : X → X is a dominant meromorphic map, then

htop(f) ≤ max
1≤p≤k

log δp(f).

The reverse inequality is not true in general: There are examples of dominant

meromorphic maps f for which htop(f) = 0 but max1≤p≤k log δp(f) > 0. For example,

Guedj [58] gave the following example: f : P2 → P2 with f [z : w : t] = [z2 :

wt + t2 : t2]. Its first dynamical degree is 2, but its topological entropy is 0. This

map is birationally equivalent to the following map g : P1 × P1 → P1 × P1 with

g([z : 1], [w : 1]) = ([z2 : 1], [w+1 : 1]). This map g is holomorphic on P1×P1, and its

first and second dynamical degrees are both 2, hence by Gromov-Yomdin’s theorem

its topological entropy is log 2.



CHAPTER 3

Pullback of currents by meromorphic maps

1. The pullback operator

1.1. Introduction. Let X and Y be two compact Kähler manifolds, and let

f : X → Y be a dominant meromorphic map. For a (p, p)-current T on Y , we seek to

define a pullback f ∗(T ) which has good properties. We let πX , πY : X × Y → X, Y

be the two projections (When X = Y we denote these maps by π1 and π2). Let Γf ⊂

X × Y be the graph of f , and let Cf ⊂ Γf be the ”exceptional” set of πY |Γf , i.e. the

smallest analytic subvariety of Γf so that the restriction of πY to Γf −Cf has fibers of

dimension dim(X)−dim(Y ). For a set B ⊂ Y , we define f−1(B) = πX(π−1
Y (B)∩Γf ),

and for a set A ⊂ X we define f(A) = πY (π−1
X (A) ∩ Γf ).

If T is a smooth form on Y , then it is standard to define f ∗(T ) as a current

on X by the formula f ∗(T ) = (πX)∗(π
∗
Y (T ) ∧ [Γf ]), which descends to cohomology

classes (see the preliminary results chapter). These considerations apply equally to

continuous forms.

Our idea for pulling back a general (p, p) current T is as follows. Assume that

we have a well-defined pullback f ∗(T ). Then for any smooth form of complement

bidegree α we should have∫
X

f ∗(T ) ∧ α =

∫
Y

T ∧ f∗(α).

Here the pushforward of the smooth form α is defined, similarly to the pullback

defined above, as f∗(α) = (πY )∗(π
∗
X(α) ∧ [Γf ]). The wedge product in the integral of

the RHS is not well-defined in general. To define it we use smooth approximations of

24
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either T or f∗(α). Fortunately, since Y is compact, any current T is of a finite order

s. Moreover since f∗(α) is a DSH current (see Section in Chapter 1), we can use the

regularization theorem in [44] to produce approximation by Cs forms Kn(f∗(α)) with

desired properties. Then we define∫
X

f ∗(T ) ∧ α = lim
n→∞

∫
Y

T ∧ Kn(f∗(α)),

if the limit exists and is the same for such good approximations.

Details of the definition will be given in the next subsections. We will also discuss a

related result on strict transform of quasi-pluri-subharmonic currents by meromorphic

maps in Theorem 3.9. We end this subsection by stating some applications of the

definition of pullback of currents.

-If π1(Cf ) has codimension ≥ p then we can pullback any positive closed (p, p)

current by f .

-If f is p-analytic stable (see definition in Section 4) then we can construct invariant

(p, p) currents for f .

-If T is a positive closed (p, p) current and f is a dominant meromorphic map so

that f ∗(T ) is well-defined, then f ∗(T ) may no longer be positive.

The rest of this chapter is organized as follows. In the remaining of this Section

we give definitions of good approximation schemes and of the pullback operator.

In Sections 2,3, and 4, we state and prove various properties and applications of the

definition. In the last Section we explore a simple but interesting quasi-automorphism

in 3-dimension (the map JX) and state some open questions.

1.2. Good approximation schemes. In this section we define good approxi-

mation schemes for DSH currents, which will be applied in particular to currents of

the form f∗(α) where α is a smooth form. For the notions of positive currents and

DSH currents, please see the preliminary chapter.
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Definition 3.1. Let Y be a compact Kähler manifold. Let s ≥ 0 be an integer.

We define a good approximation scheme by Cs forms for DSH currents Y to be an

assignment that for a DSH current T gives two sequences K±n (T ) (here n = 1, 2, . . .)

where K±n (T ) are Cs forms of the same bidegrees as T , so that Kn(T ) = K+
n (T ) −

K−n (T ) weakly converges to T , and moreover the following properties are satisfied:

1) Boundedness: If T is DSH then the DSH norms of K±n (T ) are uniformly

bounded.

2) Positivity: If T is positive then K±n (T ) are positive.

3) Closedness: If T is closed then K±n (T ) are closed.

4) Continuity: If T is DSH and U ⊂ Y is an open set so that T |U is a continuous

form then K±n (T ) converges locally uniformly on U .

5) Linearity: If T1 and T2 are two DSH currents, then K±n (T1 + T2) = K±n (T1) +

K±n (T2).

6) Self-adjointness: If T and S are DSH currents with complement bidegrees then

lim
n→∞

[

∫
Y

Kn(T ) ∧ S −
∫
Y

T ∧ Kn(S)] = 0.

7) Compatibility with the differentials: ddcK±n (T ) = K±n (ddcT ).

8) Convergence of supports: If A is compact and U is an open neighborhood of A,

then there is n0 = n0(U,A) such that if the support of T is contained in A and n ≥ n0

then supp(Kn(T )) is contained in U .

Now we give examples of good approximation schemes. First, we recall the con-

struction of the weak approximation for the diagonal Kn from Section 3 in [39].

Let k = dim(Y ). Let π : Ỹ × Y → Y × Y be the blowup of Y × Y at ∆Y . Let

∆̃Y = π−1(∆Y ) be the exceptional divisor. Then there is a closed smooth (1, 1) form

γ and a negative quasi-plurisubharmonic function ϕ so that ddcϕ = [∆̃Y ] − γ. We

choose a strictly positive closed smooth (k−1, k−1) form η so that π∗([∆̃Y ]∧η) = [∆Y ].
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Observe that ϕ is smooth out of [∆̃Y ], and ϕ−1(−∞) = ∆̃Y . Let χ : R ∪ {−∞} → R

be a smooth increasing convex function such that χ(x) = 0 on [−∞,−1], χ(x) = x

on [1,+∞], and 0 ≤ χ′ ≤ 1. Define χn(x) = χ(x + n) − n, and ϕn = χn ◦ ϕ. The

functions ϕn are smooth decreasing to ϕ, and ddcϕn ≥ −Θ for every n, where Θ is

a strictly positive closed smooth (1, 1) form so that Θ − γ is strictly positive. Then

we define Θ+
n = ddcϕn + Θ and Θ−n = Θ− = Θ − γ. Finally K±n = π∗(Θ

±
n ∧ η), and

Kn = K+
n − K−n . By replacing K±n (y1, y2) by [K±n (y1, y2) + K±n (y2, y1)]/2 if needed,

we may assume that K±n and Kn are symmetric, i.e. K±n (y1, y2) = K±n (y2, y1).

Remark 3.1. For the sake of simplicity, for a DSH current T on Y , and for the

currents Kn as above, we will use the notation: K̂n(T ) = (π1)∗(π
∗
2(T ) ∧ Kn). We

also use the similar notations K̂±n (T ). Let η : Y × Y → Y × Y be the automorphism

η(y1, y2) = (y2, y1). Then, since K±n are symmetric, if θ is a smooth form on Y we

have∫
Y

θ ∧ K̂±n (T ) =

∫
Y

θ ∧ (π1)∗(π
∗
2(T ) ∧K±n ) =

∫
Y×Y

π∗1(θ) ∧ π∗2(T ) ∧K±n

=

∫
Y×Y

η∗(π∗1(θ) ∧ π∗2(T ) ∧K±n ) =

∫
Y×Y

π∗2(θ) ∧ π∗1(T ) ∧K±n

=

∫
Y

θ ∧ (π2)∗(π
∗
1(T ) ∧K±n ).

(To show the equality between the furthest LHS and the RHS of this expression, we

need only to do so for T is a smooth form, because both are continuous in the DSH

topology. In the case when T is a smooth form, we used that η∗(π∗1(θ) ∧ π∗2(T ) ∧K±n )

= η∗(π∗1(θ)) ∧ η∗(π∗2(T ) ∧K±n ) = η∗(π∗1(θ)) ∧ η∗(π∗2(T ) ∧ η∗(K±n ) = π∗2(θ)) ∧ π∗1(T ) ∧

K±n .) Therefore K̂±n (T ) is also equal to (π2)∗(π
∗
1(T ) ∧ K±n ). Similarly, K̂n(T ) =

(π2)∗(π
∗
1(T ) ∧Kn).

Let l be a large integer dependent on s, and let (m1)n, . . . , (ml)n be sequences

of positive integers satisfying (mi)n = (ml+1−i)n and limn→∞(mi)n = ∞ for any
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1 ≤ i ≤ l. We claim that if we choose Kn = K̂(m1)n ◦ K̂(m2)n ◦ . . . ◦ K̂(ml)n then it

satisfies conditions 1)-8), and thus give examples of good approximation schemes by

Cs forms. Properties 1), 2), 3), 5), 7) and 8) follows immediately from the properties

of the kernels K̂n (see Sections 3 and 4 in [39]).

Theorem 3.1. i) If T1 is a DSHp(Y ) current and T2 is a continuous (dim(Y )−

p, dim(Y )− p) form on Y then∫
Y

K̂±n (T1) ∧ T2 =

∫
Y

T1 ∧ K̂±n (T2).

ii) Let T be a DSH current. Then Kn(T ) converges in DSHp(Y ) to T .

Proof. i) By Theorems 1.1 and 4.4 in [39], the LHS of the equality we want to

prove is continuous for the DSH convergence w.r.t. T1. The RHS of the equality is

also continuous for the DSH convergence w.r.t. T1. Hence using the approximation

theorem for DSH currents of Dinh and Sibony, it suffices to prove the equality when

T1 is a smooth form, in which case it is easy to be verified as follows∫
Y

K̂±n (T1) ∧ T2 =

∫
Y

(π1)∗(π
∗
2(T1) ∧K±n ) ∧ T2 =

∫
Y×Y

π∗2(T1) ∧K±n ∧ (π1)∗(T2)

=

∫
Y

T1 ∧ (π2)∗((π1)∗(T2) ∧K±n ) =

∫
Y

T1 ∧ K̂±n (T2).

ii) Note that since ||Kn(T )||DSH ≤ A||T ||DSH , to prove ii) it suffices to show that

Kn(T ) converges weakly to T in the sense of currents.

We prove by induction on l. If l = 1, ii) is the approximation theorem of Dinh

and Sibony. To illustrate the idea of the proof, we show for example how to prove ii)

for the case l = 2 when knowing ii) for l = 1. Hence we need to show that: For a

smooth (dim(Y )− p, dim(Y )− p) form α

lim
n1,n2→∞

∫
Y

K̂n2 ◦ K̂n1(T ) ∧ α =

∫
Y

T ∧ α.
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Since α is smooth, by i) we have

lim
n1,n2→∞

∫
Y

K̂n2 ◦ K̂n1(T ) ∧ α = lim
n1,n2→∞

∫
Y

K̂n1(T ) ∧ K̂n2(α).

By the case l = 1 we know that K̂n1(T ) converges to T in DSHp. By properties of

the kernels Kn, K̂n2(α) converges uniformly to α. Hence α − K̂n2(α) is bound by

εn2ω
dim(Y )−p
Y , where εn2 → 0 as n2 →∞. Thus

|
∫
Y

K̂n1(T ) ∧ K̂n2(α)−
∫
Y

K̂n1(T ) ∧ α| ≤ Aεn2 ,

where A > 0 is independent of n1 and n2, and εn2 → 0 when n2 →∞. Letting limit

when n1, n2 converges to ∞ and using the induction assumption for l = 1, we obtain

the claim for l = 2. �

Property 6) follows from Theorem 3.1. In fact, by the results in [39], there is a

number l0 so that for l′ ≥ l0 and T a DSH current, then K̂m1 ◦ . . . ◦ K̂ml′
(T ) is a

continuous form for any sequence m1, . . . ,ml′ . We choose l ≥ 2l0 in the definition

of Kn. Given DSH currents T and S. Since Kn(T ) = K̂(m1)n(T ′) where T ′ =

K̂(m2)n ◦ K̂(ml)n(T ) is a continuous form, we have by Theorem 3.1∫
Y

Kn(T ) ∧ S =

∫
Y

K̂(m2)n ◦ K̂(ml)n(T ) ∧ K̂(m1)n(S).

We can iterate this, note that we chose l ≥ l′, to obtain∫
Y

Kn(T ) ∧ S =

∫
Y

T ∧ K̂(ml)n ◦ K̂(ml−1)n ◦ . . . ◦ K̂(m1)n(S).

By the property (mi)n = (ml+1−i)n, we have K̂(ml)n◦K̂(ml−1)n◦. . .◦K̂(m1)n(S) = Kn(S).

Therefore ∫
Y

Kn(T ) ∧ S =

∫
Y

T ∧ Kn(S),

and Property 6) holds for individual terms.

Property 4) is proved in the following result
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Proposition 3.1. i) Let Tn be a sequence of DSHp(Y ) currents converging in

DSH to T . Assume that there is an open set U ⊂ Y so that Tn|U are continuous

forms, and Tn converges locally uniformly on U to T . Then K̂±n (Tn)|U are continuous

and converges locally uniformly on U .

ii) Let T be a DSHp(Y ) current. Assume that there is an open set U ⊂ Y so that

T |U is a continuous form. Then for any positive integer l, K±n (T )|U are continuous

forms, and converges locally uniformly on U .

Proof. i) Let U1 ⊂⊂ U2 ⊂⊂ U3 ⊂⊂ U be a relative compact open sets in

U . We will show that K̂±n (Tn) converges uniformly on U1. Let χ2 : Y → [0, 1] be

a cutoff function for U2 so that χ2 is smooth, χ2 = 1 on U2 and χ2 = 0 outside

of U3. We write K̂±n (Tn) = K̂±n (χ2Tn) + K̂±n ((1 − χ2)Tn). By assumptions, χ2Tn

converges uniformly on Y to χ2T , so there are εn decreasing to 0 as n → 0 so that

−εnωpY ≤ χ2Tn − χ2T ≤ εnω
p
Y . Then

−εnK̂±n (ωpY ) ≤ K̂±n (χ2Tn)− K̂±n (χ2T ) ≤ εnK̂
±
n (ωpY ).

Now K̂−n (ωpY ) = K̂−(ωpY ) is a smooth form, and hence K̂+
n (ωpY ) = K̂n(ωpY ) −

K̂−(ωpY ) is a sequence of smooth forms converging uniformly on Y , by applying Propo-

sition 4.6 in [39] to ωpY . Hence to prove i), it remains to show that K̂±n ((1 − χ2)Tn)

converges uniformly on U1.

We let χ1 : Y → [0, 1] be a cutoff function for U1 so that χ1 is smooth, χ1 = 1

on U1 and χ1 = 0 outside of U2. Then it suffices to show that χ1K̂
±
n ((1 − χ2)Tn)

uniformly converges on Z. By definition, we have

χ1K̂
±
n ((1− χ2)Tn)(x) =

∫
Y

χ1(x)K±n (x, y) ∧ (1− χ2(y))Tn(y)dy

=

∫
Y

χ1(x)(1− χ2(y))K±n (x, y) ∧ Tn(y)dy.
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By definition of χ1 and χ2, the support of χ1(x)(1 − χ2(y))K±n (x, y) is contained in

a fixed compact set of Y × Y − ∆Y . Hence by definition of K±n , there is an n0 and

smooth forms k±(x, y) on Y × Y so that χ1(x)(1− χ2(y))K±n (x, y) = k±(x, y) for all

n ≥ n0. Then for n ≥ n0 we have

χ1K̂
±
n ((1− χ2)Tn)(x) =

∫
Y

k±(x, y) ∧ Tn(y)dy,

and the RHS converges uniformly to
∫
Y
k±(x, y) ∧ T (y)dy since Tn ⇀ T .

ii) We prove the claim for example for the case l = 1 and l = 2.

First, consider the case l = 1. Then ii) follows by applying i) to the constant

sequence Tn = T .

Now we consider the case l = 2. ThenK+
n1,n2

(T ) = K̂+
n2
◦K̂+

n1
(T )+K̂−n2

◦K̂−n1
(T ), and

K−n1,n2
(T ) = K̂+

n2
◦ K̂−n1

(T ) + K̂−n2
◦ K̂+

n1
(T ). We show for example that K̂+

n2
◦ K̂+

n1
(T )

converges uniformly locally on U as both n1 and n2 go to ∞. We apply i) to the

sequence Tn = K̂+
n (T ). The two conditions of i) are not hard to check: First, by the

case l = 1 the sequence Tn converges locally uniformly on U . Second, by Theorem

3.1, Tn = K̂n(T ) + K̂−(T ) ⇀ T + K̂−(T ). �

1.3. Definition of the pullback operator. Now we give details of the defini-

tion of the pullback operator. Before giving the definition, let us state the following

observation concerning the approach using all possible approximations. (This is in

fact a general fact of linear operators: if a linear operator is continuous at one point

then it is continuous everywhere.)

Lemma 3.1. Assume that for a positive closed (p, p) current T0 and for every se-

quence of positive closed smooth forms T±n whose masses ||T±n || are uniformly bounded

and T+
n − T−n ⇀ T0, then f ∗(T+

n − T−n ) converges to the same limit. Then the same

property holds for any positive closed (p, p) current T .
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Proof. In fact, let T+
n − T−n and S+

n − S−n be two sequences weakly converging

to a positive closed (p, p) current T , where T±n and S±n are positive closed smooth

(p, p) forms having uniformly bounded masses. Let H+
n −H−n be a sequence weakly

converging to T0 where H±n are positive closed smooth (p, p) forms having uniformly

bounded masses. Then (T+
n + S−n + H+

n ) − (T−n + S+
n + H−n ) is a sequence weakly

converges to T0 with the same property. Hence f ∗(T+
n +S−n +H+

n )−f ∗(T−n +S+
n +H−n )

and f ∗(H+
n −H−n ) converges to the same limit by assumption, and therefore we must

have f ∗(T+
n + S−n ) − f ∗(T−n + S+

n ) weakly converges to 0. Hence f ∗(T+
n − T−n ) and

f ∗(S+
n − S−n ) converges to the same limit. �

Now we state the definition of pullback of currents for a dominant meromorphic

map f : X → Y between compact Kähler manifolds. Recall that since Y is a compact

manifold, any current on Y is of finite order (see the preliminary chapter). Upto this

point, we have written T for a DSH current to be smoothen. In the definition below,

T is a general current which is not necessarily DSH, and the current to be smoothen

is f∗(α).

Definition 3.2. Let T be a (p, p) current of order s0. We say that f ∗(T ) is

well-defined if there is a number s ≥ s0 and a current S on X so that

lim
n→∞

∫
Y

T ∧ Kn(f∗(α)) =

∫
X

S ∧ α,

for any smooth form α on X and any good approximation scheme by Cs+2 forms.

Then we write f ∗(T ) = S.

Note that by the self-adjointness property 6) of good approximation schemes, if T

is a DSH current then f ∗(T ) = S is well-defined iff there is a number s ≥ 0 such that

for any good approximation scheme by Cs+2 forms Kn then limn→∞ f
∗(Kn(T )) = S.

Some examples of currents that can be pulled back by any meromorphic map

are: continuous forms, subvarieties whose preimages have big codimension, measures
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having no mass on πX(Cf ), positive ddc-closed (1, 1) currents... See the next sections

for details.

2. Good properties of the pullback operator

2.1. Some simple properties. The operator f ∗ in Definition 3.2 has the fol-

lowing properties:

Lemma 3.2. i) If T is a continuous (p, p) form (not necessarily DSH) then f ∗(T )

is well-defined and coincides with the standard definition f ∗(T ) := (π1)∗(π
∗
2(T )∧[Γf ]).

ii) f ∗ is closed under linear combinations: If f ∗(T1) and f ](T2) are well-defined,

then so is f ∗(a1T1 + a2T2) for any complex numbers a1 and a2. Moreover f ∗(a1T1 +

a2T2) = a1f
∗(T1) + a2f

∗(T2).

iii) If T is DSH and f ∗(T ) is well-defined, then the support of f ∗(T ) is contained

in f−1(supp(T )).

iv) If T is closed then f ∗(T ) is also closed, and in cohomology {f ∗(T )} = f ∗{T}.

Proof. Let Kn = K+
n −K−n be a good approximation scheme by C2 forms.

i) If T is a continuous form, then K±n (T ) uniformly converges on Y . Hence there

are continuous forms T+, T− and constants εn decreasing to 0, so that T = T+ − T−

and −εnωpY ≤ K±n (T )− T± ≤ εnω
p
Y . Then

−εnf ∗(ωpY ) ≤ f ∗(K±n (T ))− f ∗(T±) ≤ εnf
∗(ωpY ),

and thus f ∗(K±n (T )) weakly converges to f ∗(T±). Therefore, f ∗(K+
n (T ) − K−n (T ))

weakly converges to f ∗(T+)− f ∗(T−) = f ∗(T ). This shows that f ∗(T ) is well-defined

and coincides with the usual definition.

ii) Follows easily from the definition.

iii) If T is DSH, the result follows from the definition and the fact that support

of Kn(T ) converges to support of T .



3. PULLBACK OF CURRENTS BY MEROMORPHIC MAPS 34

iv) First we show that if T = T1 + ddcT2 is closed, where T1 is a (p, p) current and

T2 is a (p− 1, p− 1) current both of order 0, and f ∗(T ) is well-defined, then f ∗(T ) is

closed.

From the assumption, it follows that T1 is closed. To show that f ∗(T ) is closed, it

suffices to show that if α is a d-exact (dim(X)− p, dim(X)− p) smooth form, then∫
X

f ∗(T ) ∧ α = 0.

In fact, by definition∫
X

f ∗(T ) ∧ α = lim
n→∞

∫
Y

T1 ∧ Kn(f∗(α)) + T2 ∧ ddcKn(f∗(α)).

By the ddc lemma, there is a smooth form β so that α = ddc(β). Then by the

compatibility with differentials of good approximation schemes, we have Kn(f∗(α)) =

Kn(f∗(dd
cβ)) = ddcKn(f∗(β)) is d-exact. Thus each of the two integrals in the RHS

of the above equality is 0, independent of n. Hence the limit is 0 as well.

Now we show that {f ∗(T )} = f ∗{T}. Let θ be a smooth closed form so that

{T} = {θ}. Then there is a current R so that T −θ = ddc(R). If α is a closed smooth

form then ∫
X

(f ∗(T )− f ∗(θ)) ∧ α = lim
n→∞

∫
Y

(T − θ) ∧ Kn(f∗(α))

= lim
n→∞

∫
Y

ddc(R) ∧ Kn(f∗(α))

= lim
n→∞

∫
Y

R ∧ Kn(f∗(dd
cα)) = 0,

since ddc(α) = 0. This shows that {f ∗(T )} = {f ∗(θ)}, and the latter is f ∗{T} by

definition.

�

For a smooth form, we can also define its pullback by using any desingularization

of the graph of the map. We have an analogous result
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Theorem 3.2. Let Γ̃f be a desingularization of Γf , and let π : Γ̃f → X and

g : Γ̃f → Y be the induced maps of πX |Γf and πY |Γf . Thus Γ̃f is a compact Kähler

manifold, π is a modification, and g is a surjective holomorphic map so that f =

g ◦ π−1. Let T be a (p, p) current on Y . If g∗(T ) is well-defined, then f ∗(T ) is also

well-defined. Moreover f ∗(T ) = π∗(g
∗(T )).

Proof. Assume that g∗(T ) is well-defined with respect to number s in Definition

3.2. Let α be a smooth form on X and Kn a good approximation scheme by Cs+2

forms on Y . Then f∗(α) = g∗(π
∗α). Since π∗(α) is smooth on Γ̃f and g∗(T ) is

well-defined, we have

lim
n→∞

∫
Y

T ∧ Kn(f∗α) = lim
n→∞

∫
Y

T ∧ Kn(g∗π
∗α)

=

∫
Γ̃f

g∗(T ) ∧ π∗α =

∫
X

π∗g
∗(T ) ∧ α,

as wanted. �

The following result is a restatement of a result of Dinh and Sibony (section 5 in

[43]), concerning pullback of DSH currents outside the set Cf . Note that the resulting

current is defined on X − πX(Cf ) only, and may not have locally finite mass across

Cf .

Theorem 3.3. Let θ be a smooth function on X×Y so that supp(θ)∩Γf ⊂ Γf−Cf .

Then for any DSHp current T on Y , (πX)∗(θ[Γf ] ∧ π∗Y (T )) is well-defined (see also

[63]).

Proof. In this proof we use the value s = 0 in Definition 3.2. The proof is the

same as the proof of Lemma 3.3 in [43] using the following observations:

i) Lemma 3.1 in [43] applies for C2 forms Tn. Hence Lemma 3.3 in [43] applies to

C2 forms Tn.
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ii) Let us choose two different good approximation schemes by C2 forms Kn =

K+
n−K−n andHn = H+

n −H−n . Then the sequencesK+
n (T )+H−n (T ) andK−n (T )+H+

n (T )

converges in DSH to a same positive current.

iii) Apply Lemma 3.3 in [43] to the sequences K+
n (T )+H−n (T ) and K−n (T )+H+

n (T ),

we conclude that in Γf −Cf , the sequences f ∗(K+
n (T ))+f ∗(H−n (T )) and f ∗(K−n (T ))+

f ∗(H+
n (T )) converges to a same current. Thus we have that the sequences f ∗(K+

n (T )−

K−n (T )) and f ∗(H+
n (T )−H−n (T )) converges in Γf − Cf to a same current. �

2.2. Auxiliary results.

Lemma 3.3. Let T be a positive closed (p, p) current on Y . Then there is a closed

smooth (p, p) form θ on Y so that {θ} = {T} in cohomology, and moreover

−A||T ||ωpY ≤ θ ≤ A||T ||ωpY .

Here A > 0 is independent of T .

Proof. Let π1, π2 : Y × Y → Y be the two projections, and let ∆Y be the

diagonal of Y . Let ∆ be a closed smooth form on Y ×Y representing the cohomology

class of [∆Y ]. If we define

θ = (π1)∗(π
∗
2(T ) ∧∆),

it is a smooth (p, p) current on Y having the same cohomology class as T . Since Y is

compact, there is a constant A > 0 so that A(π∗1ωY + π∗2ωY )dim(Y ) ±∆ are strongly

positive forms. Since T is a positive current, it follows that

θ = (π1)∗(π
∗
2(T ) ∧∆) ≤ A(π1)∗((π

∗
1ωY + π∗2ωY )dim(Y ) ∧ π∗2(T )) = A||T ||ωpY .

Similarly, we have also θ ≥ −A||T ||ωpY . �

Consider a positive closed (p, p) current T on a compact Kähler manifold Y . It

is known that (see Dinh and Sibony[40], Bost, Gillet and Soule[13]) there is a DSH
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(p-1,p-1) current S and a closed smooth form α so that T = α + ddcS. Here S is a

difference of two negative currents. When p = 1 or Y is a projective space, then we

can choose S to be negative. However in general we can not choose S to be negative

(see [13]). The following weaker conclusion is sufficient for the purpose here

Lemma 3.4. Let T be a positive closed (p, p) current on a compact Kähler manifold

Y . Then there is a closed smooth (p, p) form α and a negative DSH (p − 1, p − 1)

current S so that

T ≤ α + ddcS.

Moreover, there is a constant C > 0 independent of T so that ||α||L∞ ≤ C||T || and

||S|| ≤ C||T ||. If T is strongly positive then we can choose S to be strongly negative.

Here ||.||L∞ is the maximum norm of a continuous form and ||.|| is the mass of a

positive or negative current.

Proof. Notations are as in the paragraph in Section 2 when we defined the

kernels Kn. Define H = π∗(ϕη). Then H is a negative (k − 1, k − 1) current on

Y × Y .

We write γ = γ+ − γ− for strictly positive closed smooth (1, 1) forms γ±. If we

define Φ± = π∗(γ
±∧η) then Φ± are positive closed (k, k) currents with L1 coefficients.

In fact (see [39]) Φ± are smooth away from the diagonal ∆Y , and the singularities of

Φ±(y1, y2) and their derivatives are bounded by |y1 − y2|−(2k−2) and |y1 − y2|−(2k−1).

Moreover

ddcH = π∗(dd
cϕ ∧ η) = π∗([∆̃Y ] ∧ η − (γ+ − γ−) ∧ η) = [∆Y ]− (Φ+ − Φ−).

Consider S1 = (π1)∗(H ∧ π∗2(T )) and R±1 = (π1)∗(Φ
± ∧ T ). Then S1 is a negative

current, and R±1 are positive closed currents. Moreover

ddcS1 = (π1)∗(dd
cH ∧ π∗2(T )) = T −R+

1 +R−1 .
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Therefore T ≤ R+
1 +ddcS1. Moreover R+

1 is a current with L1 coefficients, and there is

a constant C1 > 0 independent of T so that ||S1||, ||R+
1 ||L1 ≤ C1||T || (see e.g. Lemma

2.1 in [39]).

If we apply this process for R+
1 instead of T we find a positive closed current R+

2

with coefficients in L1+1/(2k+2) and a negative current S2 so that R+
1 ≤ R+

2 + ddcS2.

Moreover

||R+
2 ||L1+1/(2k+2) , ||S2|| ≤ C2||R+

1 ||L1 ≤ C1C2||T ||

for some constant C2 > 0 independent of T . After iterating this process a finite

number of times we find a continuous form R and a negative current S so that

T ≤ R+ddcS. Moreover, ||R||L∞ , ||S|| ≤ C||T || for some constant C > 0 independent

of T . Since we can bound R by ωpY upto a multiple constant of size ||R||L∞ , we are

done. �

Theorem 3.4. Let Tj and T be (p, p) currents of order s0. Assume that −Sj ≤

T − Tj ≤ Sj for any j, where Sj are positive closed (p, p) currents with ||Sj|| → 0 as

j →∞.

1) If f ∗(Tj) is well-defined for any j with the same number s in Definition 3.2,

then f ∗(T ) is well-defined. Moreover f ∗(Tj) weakly converges to f ∗(T ).

2) If f ∗(ddcTj) is well-defined for any j with the same number s in Definition 3.2,

then f ∗(ddcT ) is well-defined. Moreover f ∗(ddcTj) weakly converges to f ∗(ddcT ).

Note that when p = 0, a closed (0, 0) current on X is a constant, hence the Sj in

Theorem 3.4 are positive constants converging to zero.

Proof. i) Let Kn = K+
n − K−n be a good approximation scheme by Cs+2 forms.

Let α be a strongly positive smooth (k−p, k−p) form on X. then f∗(α) is a strongly

positive form. Therefore K±n f∗(α) are strongly positive forms of class C2. Since
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−Sj ≤ Tj − T ≤ Sj, we obtain

−
∫
X

Sj ∧ K±n f∗(α) ≤
∫
X

(Tj − T ) ∧ K±n f∗(α) ≤
∫
X

Sj ∧ K±n f∗(α).

There is a constant A > 0 independent of α so that A||α||L∞ωk−pX ± α are strongly

positive forms. Then A||α||L∞f∗(ωk−pX ) ± f∗(α) are strongly positive forms on X.

Hence we have ∫
X

Sj ∧ K±n f∗(α) ≤ A||α||L∞
∫
X

Sj ∧ K±n f∗(ω
k−p
X ).

The latter integral can be computed cohomologously, hence can be bound as

A||α||L∞
∫
X

Sj ∧ K±n f∗(ω
k−p
X ) ≤ A||α||L∞||Sj|| × ||K±n f∗(ω

k−p
X )||

≤ A||α||L∞||Sj|| × ||f∗(ωk−pX )||.

The latter inequality comes from the properties of good approximation schemes.

Hence,

(2) −A||α||L∞||Sj|| ≤
∫
X

(Tj − T ) ∧ K±n f∗(α) ≤ A||α||L∞||Sj||.

Since f ∗(Tj) are well-defined for all j, if we take limit as n→∞ in (2), we get

−A||α||L∞||Sj|| ≤
∫
X

f ∗(Tj) ∧ α− lim sup
n→∞

∫
X

T ∧ Knf∗(α)

≤
∫
X

f ∗(Tj) ∧ α− lim inf
n→∞

∫
X

T ∧ Knf∗(α)

≤ A||α||L∞||Sj||.

Since ||Sj|| → 0, taking limit as j →∞ shows that

L(α) := lim
n→∞

∫
X

T ∧ Knf∗(α)

exists, and moreover it satisfies

(3) −A||α||L∞||Sj|| ≤
∫
X

f ∗(Tj) ∧ α− L(α) ≤ A||α||L∞||Sj||,

for all j, and all strongly positive smooth (dim(X) − p, dim(X) − p) form α. Since

any smooth (dim(X)−p, dim(X)−p) form α is the difference of two strongly positive
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smooth (dim(X) − p, dim(X) − p) forms α1 and α2 whose L∞ norms are uniformly

bounded (up to a multiplicative constant) by ||α||L∞ , it follows that (3) holds for

any smooth form α. From this, it follows easily that the assignment α 7→ L(α) is a

well-defined functional on smooth forms α. Now we show that it is a current on X.

For this end, it suffices to show that if αn are smooth forms so that ||αn||Cs → 0 for

any fixed s ≥ 0 then L(αn) → 0. This follows easily from (3) by first taking limit

when n→∞ and then taking limit when j →∞, using the assumptions that f ∗(Tj)

are currents, hence

lim
n→∞

∫
X

f ∗(Tj) ∧ αn = 0,

for any j.

ii) The proof is similar to the proof of i), with a small change: The estimate (2)

is modified to

−A||ddcα||L∞||Sj|| ≤
∫
X

(Tj − T ) ∧ K±n f∗(ddcα) ≤ A||ddcα||L∞||Sj||.

�

2.3. Main results. The first result applies for the case when πX(Cf ) has codi-

mension ≥ p, which generalizes a result proved by Dinh and Sibony in the case of

projective spaces (see Proposition 5.2.4 in [44])

Theorem 3.5. Let X and Y be two compact Kähler manifolds. Let f : X → Y

be a dominant meromorphic map. Assume that πX(Cf ) is of codimension ≥ p. Then

f ∗(T ) is well-defined for any positive closed (p, p) current T on Y . Moreover the

following continuity holds: if Tj are positive closed (p, p) currents weakly converging

to T then f ∗(Tj) weakly converges to f ∗(T ).

Proof. We follow the proof of Proposition 5.2.4 in [44] with some appropriate

modifications. Let Kn = K+
n −K−n be a good approximation scheme by C2 forms.



3. PULLBACK OF CURRENTS BY MEROMORPHIC MAPS 41

a) First we show that f ∗(T ) is well-defined for any positive closed (p, p) current

T .

Let θ be a smooth closed (p, p) form so that {θ} = {T} in cohomology classes.

Since T = (T − θ) + θ, by Lemma 3.2, to show that f ∗(T ) is well-defined, it is enough

to show that f ∗(T − θ) is well-defined. By ddc lemma (see also [40]), there is a DSH

current R so that T − θ = ddc(R). Hence to show that f ∗(T − θ) is well-defined, it is

enough to show that f ∗(R) is well-defined.

We can write Kn(R) = R1,n −R2,n, where Ri,n are positive (p− 1, p− 1) forms of

class C2, and ddc(Ri,n) = Ω+
i,n − Ω−i,n, where Ω±i,n are positive closed C2 (p, p) forms.

Moreover, ||Ri,n|| and ||Ω±i,n|| are uniformly bounded.

i) First we show that ||f ∗(Ri,n)|| are uniformly bounded. Theorem 3.3 implies

that f ∗(Ri,n) converges in X − πX(Cf ) to a current. Since the codimension of πX(Cf )

is ≥ p, it is weakly p-pseudoconvex (see Lemma 5.2.2 in [44]). Hence there exists a

smooth (dim(X)−p, dim(X)−p) form Θ defined onX so that ddcΘ ≥ 2ω
dim(X)−p+1
X on

πX(Cf ). We can choose a small neighborhood V of πX(Cf ) so that ddcΘ ≥ ω
dim(X)−p+1
X

on V . Since Ri,n is a positive C2 form, f ∗(Ri,n) is well defined and is a positive current.

Since f ∗(Ri,n) converges in X − πX(Cf ) to a current, it follows that ||f ∗(Ri,n)||X−V is

bounded. Because

||f ∗(Ri,n)||X = ||f ∗(Ri,n)||X−V + ||f ∗(Ri,n)||V ,

to show that ||f ∗(Ri,n)||X is bounded, it is enough to estimate ||f ∗(Ri,n)||V . We have

||f ∗(Ri,n)||V =

∫
V

f ∗(Ri,n) ∧ ωdim(X)−p+1
X ≤

∫
V

f ∗(Ri,n) ∧ ddc(Θ)

=

∫
X

f ∗(Ri,n) ∧ ddc(Θ)−
∫
X−V

f ∗(Ri,n) ∧ ddc(Θ).

The term

|
∫
X−V

f ∗(Ri,n) ∧ ddc(Θ)|
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can be bound by ||f ∗(Ri,n)||X−V , and thus is bounded. We estimate the other term:

Since X is compact

|
∫
X

f ∗(Ri,n) ∧ ddc(Θ)| = |
∫
X

ddcf ∗(Ri,n) ∧Θ| = |
∫
X

f ∗(ddcRi,n) ∧Θ|

= |
∫
X

f ∗(Ω+
i,n − Ω−i,n) ∧Θ|.

Since Ω±i,n are positive closed C2 forms, f ∗(Ω±i,n) are well-defined and are positive

closed currents. Choose a constant A > 0 so that Aω
dim(X)−p
X ±Θ are strictly positive

forms, we have

|
∫
X

f ∗(Ω+
i,n − Ω−i,n) ∧Θ|

≤ |
∫
X

f ∗(Ω+
i,n) ∧Θ|+ |

∫
X

f ∗(Ω−i,n) ∧Θ|

≤ A

∫
X

f ∗(Ω+
i,n) ∧ ωdim(X)−p

X + A

∫
X

f ∗(Ω−i,n) ∧ ωdim(X)−p
X .

Since Ω±i,n are positive closed currents with uniformly bounded norms, the last inte-

grals are uniformly bounded as well.

ii) From i) we see that for any good approximation scheme by C2 forms Kn, the

sequence f ∗(R1,n)− f ∗(R2,n) has a convergent sequence. We now show that the limit

is unique, hence complete the proof of Theorem 3.5. So let τ be the limit of the

sequence f ∗(R1,n)− f ∗(R2,n). Such a τ is a DSHp−1 current by the consideration in

i). Let Hn = H+
n −H−n be another good approximation scheme by C2 forms, and let

τ ′ be the corresponding limit, which is in DSHp−1. We want to show that τ = τ ′. or

equivalently, to show that τ − τ ′ = 0.

By Theorem 3.3, τ − τ ′ = 0 in X − πX(Cf ). Hence support of τ − τ ′ is contained

in πX(Cf ). Since τ − τ ′ is in DSHp−1, it is a C-flat (p − 1, p − 1) current (see the

preliminary chapter or see Bassanelli [3]). Because the codimension of πX(Cf ) is ≥ p,

it follows by Federer-type support theorem for C-flat currents (see the preliminary

chapter or see Theorem 1.13 in [3]) that τ − τ ′ = 0 identically.
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b) Finally, we show that if Tj are positive closed (p, p) currents converging in DSH

to T then f ∗(Tj) weakly converges to f ∗(T ).

We let π1, π2 : Y ×Y → Y be the projections, and let ∆Y be the diagonal. As in the

proof of Lemma 3.3, we choose ∆ to be a smooth closed (dim(Y ), dim(Y )) on Y having

the same cohomology class with [∆Y ]. We write ∆ = ∆+−∆−, where ∆± are strongly

positive smooth closed (dim(Y ), dim(Y )) forms. If we define φ±j = (π1)∗(π
∗
2(Tj)∧∆±)

and φ± = (π1)∗(π
∗
2(T )∧∆±), then {Tj} = {φ+

j −φ−j } and {T} = {φ+−φ−}. Moreover,

φ±j are positive closed smooth forms converging uniformly to φ±. Hence f ∗(φ±j ) weakly

converges to f ∗(φ±). Thus to show that f ∗(Tj) weakly converges to f ∗(T ), it is enough

to show that f ∗(Tj−φj) weakly converges to f ∗(T −φ), where we define φj = φ+
j −φ−j

and φ = φ+ − φ−.

By Proposition 2.1 in [40], there are positive (p − 1, p − 1) currents R±j and R±

so that Tj − φj = ddc(R+
j − R−j ), T − φ = ddc(R+ − R−). Moreover, we can choose

these in such a way that R±j converges in DSH to R±. From the proof of a), f ∗ is

well-defined on the set of DSHp−1 currents. Thus to prove b) we need to show only

that f ∗(R±j ) weakly converges to f ∗(R±).

By Theorem 3.3, on X − πX(Cf ) the currents f ∗(R±j ) and f ∗(R±) are the same

as the currents f o(R±j ) and f o(R±) defined in [43]. Hence by the results in [43],

it follows that f ∗(R±j ) weakly converges in X − πX(Cf ) to f ∗(R±). Thus as in the

proof of a), to show that f ∗(R±j ) weakly converges to f ∗(R±), it suffices to show that

||f ∗(Rj)||DSH is uniformly bounded.

The current f ∗(Rj) is the limit of f ∗(Kn(Rj)). As in a), we write Kn(Rj) =

R+
j,n − R−j,n where R±j,n are positive DSHp−1(Y ) forms of class C2. Moreover, by the

properties of good approximation schemes, there is a constant A > 0 independent of

j and n so that ||R±j,n||DSH ≤ A||R±j ||DSH . It can be seen from the proof of a) that

f ∗(Rj) is a DSHp−1 current. Moreover ||f ∗(ddcRj)||DSH , which can be bound using
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intersections of cohomology classes, is ≤ A||Rj||DSH , where A > 0 is independent of

j.

We choose an open neighborhood V of πX(Cf ) and a form Φ as in the proof of a).

Then we can see from a) that

||f ∗(Rj)||DSH ≤ A||f ∗(Rj)||X−V,DSH + A||f ∗(ddcRj)||DSH ,

where A > 0 is a constant independent of j, and ||f ∗(Rj)||X−V,DSH means the DSH

norm of f ∗(Rj) computed on the setX−V . From the results in [43], ||f ∗(Rj)||X−V,DSH

is uniformly bounded. The term ||f ∗(ddcRj)||DSH was shown above to be uniformly

bounded as well. Thus ||f ∗(Rj)||DSH is uniformly bounded as desired. �

Theorem 3.5 is a special case of the following result (choose A = Y in Theorem

3.6).

Theorem 3.6. Let X and Y be two compact Kähler manifolds. Let f : X → Y

be a dominant meromorphic map. Let A ⊂ Y be a closed subset so that f−1(A) ∩

πX(Cf ) ⊂ V where V is an analytic subvariety of X having codim ≥ p. If T is a

positive closed (p, p)-current on Y which is continuous on Y −A, then f ∗(T ) is well-

defined. Moreover, the following continuity holds: If T±n are positive closed continuous

(p, p) forms so that ||T±n || are uniformly bounded, T+
n − T−n ⇀ T , and T±n locally

uniformly converges on Y − A, then f ∗(T+
n − T−n ) ⇀ f ∗(T ).

Proof. Let θ be a closed smooth form on Y having the same cohomology class

as T . Since T is continuous on U = X − A, there are DSHp−1 currents R± so

that T − θ = ddc(R+) − ddc(R−), where R±|U are continuous (see Proposition 2.1

in [40]). As in the proof of the Theorem 3.5, we will show that f ∗(R±) are well-

defined. Since f−1(A) ∩ πX(Cf ) ⊂ V , where V is of codimension ≥ p, it is enough as

before to show that f ∗(K±n (R±)) have bounded masses outside a small neighborhood

of f−1(A) ∩ πX(Cf ). First, by the proof of Theorem 3.5, f ∗(K±n (R±)) have bounded
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masses outside a small neighborhood of πX(Cf ). Hence it remains to show that

f ∗(K±n (R±)) have bounded masses outside a small neighborhood of f−1(A).

Let B be a small neighborhood of f−1(A). Then there is a cutoff function χ for

A, so that f−1(supp(χ)) ⊂ B. We write

f ∗(K±n (R±)) = f ∗(χK±n (R±)) + f ∗((1− χ)K±n (R±)).

The first current has support in B, and hence has no contribution for the mass of

f ∗(K±n (R±)) outside B. By properties of good approximation schemes by C2 forms,

(1 − χ)K±n (R±) uniformly converges to a continuous form on Y , and hence f ∗((1 −

χ)K±n (R±)) has uniformly bounded masses on X, which is what wanted to prove.

To complete the proof, we need to show the continuity stated in the theorem. This

continuity can be proved using the arguments from the first part of the proof, and

from part b) of the proof of Theorem 3.5 and the proof of Proposition 3.1. �

Example 1: In [5], Bedford and Kim studied the linear fractional pseudo-automorphisms.

These are birational selfmaps f of rational 3-manifolds X so that both f and f−1

have no exceptional hypersurfaces. Hence we can apply Theorem 3.5 to pullback and

pushforward any positive closed (2, 2) current on X. The map JX in Subsection 5.1

is also a pseudo-automorphism.

As another consequence, we have the following result on pulling back of varieties:

Corollary 3.1. Let f,X, Y be as in Theorem 3.6. Let V be an analytic variety

of Y of codim p. Assume that f−1(V ) has codim ≥ p. Then f ∗[V ] is well-defined,

and supported in f−1(V ).

Reamark that in Corollary 3.1, even if V is an effective variety f ∗[V ] may be

negative (see Corollary 3.7).

The assumptions in Corollary 3.1 are optimal, as can be seen from
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Example 2: Let Y = a compact Kähler 3-fold, and let L0 be an irreducible

smooth curve in Y . Let π : X → Y be the blowup of Y along L0. If L is an

irreducible curve in Y which does not coincide with L0 then π−1(L) has dimension 1,

hence π∗[L] is well-defined. In contrast, it is expected that π∗[L0] is not well-defined.

One explanation (which is communicated to us by Professor Tien Cuong Dinh, see

also the introduction in [2]) is that if π∗[L0] was to be defined, then it should be a

special (2, 2) current on the hypersurface π−1(L0). However, we have too many (2, 2)

currents on that hypersurface to point out a special one.

We now turn to the pullback of a positive closed (p, p) current T in general. Let

the Siu’s decomposition of T (see the preliminary results chapter) be

T = R +
∞∑
j=1

λj[Vj].

Theorem 3.7. Notations are as above. Assume that for any irreducible variety

V of codimension p contained in E(T ), then f−1(V ) has codimension ≥ p. Then

f ∗(
∑∞

j=1 λj[Vj]) is well-defined and is equal to
∑∞

j=1 λjf
∗[Vj]. Hence f ∗(T ) is well-

defined iff f ∗(R) is well-defined.

Proof. By assumption and Corollary 3.1, if V is an analytic variety of codi-

mension p contained in E(T ), then f ∗[V ] is well-defined with the number s = 0 in

Definition 3.2. Hence the currents

WN =
n∑
j=1

λj[Vj]

can be pulled back with the same number s = 0 in Definition 3.2, here N is a positive

integer. Since 0 ≤
∑

j λj[Vj]−WN = SN where SN ⇀ 0 as N →∞, by Theorem 3.4

it follows that f ∗(
∑

j λj[Vj]) =
∑

j λjf
∗[Vj] is well-defined. �

3. Compatibility with previous definitions

We now compare our results with the results in previous papers.
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The pullback of positive closed (1, 1) currents was defined by Meo [63] for finite

holomorphic maps between complex manifolds (not necessarily compact or Kähler).

Our definition coincides with his in the case of compact Kähler manifolds

Corollary 3.2. Let X and Y be two compact Kähler manifolds. Let f : X → Y

be a dominant meromorphic map. Let T be a positive closed (1, 1)-current on Y .

Then f ∗(T ) is well-defined, and coincides with the usual definition.

Proof. Since πX(Cf ) is a proper analytic subvariety of X, it has codimension

≥ 1, thus we can apply Theorem 3.5. �

More generally, we can pullback a function dominated by a quasi-PSH function ϕ

(see [43] for pulling back of a form whose coefficients are bounded by a quasi-PSH

function).

Proposition 3.2. Let ψ be a function bounded by a quasi-PSH function ϕ. Then

the (0, 0) current defined by ψ can be pulled back by f . The resulting current f ∗(ψ)

can be represented by an L1 function.

Proof. Without loss of generality, we may assume that 0 ≥ ψ ≥ ϕ. We will

show the existence of a current S so that for any smooth form α and any good

approximation scheme by C2 forms Kn then

(4) lim
n→∞

∫
Y

ψ ∧ Kn(f∗(α)) =

∫
X

S ∧ α.

We define linear functionals Sn and S±n on top forms on X by the formulas

< Sn, α > =

∫
Y

ψ ∧ Kn(f∗(α)),

< S±n , α > =

∫
Y

ψ ∧ K±n (f∗(α)).
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Then Sn = S+
n − S−n , and it can be checked that S±n are negative (0, 0) currents, and

hence Sn is a current of order 0. Moreover, if α is a positive smooth measure then

0 ≥< S±n , α > =

∫
Y

ψ ∧ K±n (f∗(α))

≥
∫
Y

ϕ ∧ K±n (f ∗(α))

=

∫
X

f ∗(K±n (ϕ)) ∧ α.

Thus 0 ≥ S±n ≥ f ∗(K±n (ϕ)) for all n.

Let us write ddc(ϕ) = T − θ where T is a positive closed (1, 1) current, and θ

is a smooth closed (1, 1) form. By property 4) of Definition 3.1, there is a strictly

positive closed smooth (1, 1) form Θ so that Θ ≥ K±n (θ) for any n. Then f ∗(K±n (ϕ))

are negative C2 forms so that

ddcf ∗(K±n (ϕ)) = f ∗(K±n (ddcϕ)) = f ∗(K±n (T − θ))

≥ f ∗(K±n (−θ)) ≥ −f ∗(Θ)

for any n, i.e they are negative f ∗(Θ)-plurisubharmonic functions. Moreover the se-

quence of currents f ∗(K±n (ϕ)) has uniformly bounded mass (see the proof of Theorem

3.5). Therefore, by the compactness of this class of functions (see Chapter 1 in [23]),

after passing to a subsequence if needed, we can assume that f ∗(K±n (ϕ)) converges

in L1 to negative functions denoted by f ∗(ϕ±). Let S± be any cluster points of S±n .

Then 0 ≥ S± ≥ f ∗(ϕ±), which shows that any cluster point S = S+ − S− of Sn has

no mass on sets of Lebesgue measure zero. Hence to show that S is uniquely defined,

it suffices to show that S is uniquely defined outside a proper analytic subset of Y .

Let E be a proper analytic subset of Y so that f : X − f−1(E) → Y − E is

a holomorphic submersion. If α is a smooth measure whose support is compactly

contained in X − f−1(E) then f∗(α) is a smooth measure on Y . Hence by condition

4) of Definition 3.1, Kn(f∗(α)) uniformly converges to the smooth measure f∗(α).



3. PULLBACK OF CURRENTS BY MEROMORPHIC MAPS 49

Then it follows from the definition of S that

< S, α >=

∫
Y

ψ ∧ f∗(α).

Hence S is uniquely defined on X − f−1(E), and thus it is uniquely defined on the

whole X, as wanted. �

The pullback of positive ddc closed (1, 1) currents were defined by Alessandrini -

Bassanelli [2] and Dinh -Sibony [43] under several contexts. Our definition coincides

with theirs in the case of compact Kähler manifolds

Corollary 3.3. Let X and Y be two compact Kähler manifolds. Let f : X → Y

be a dominant meromorphic map. Let T be a positive ddc- closed (1, 1)-current on Y .

Then f ∗(T ) is well-defined, and coincides with the usual definition.

Proof. Consider a desingularization Γ̃f and π : Γ̃f → X and g : Γ̃f → Y as in

Theorem 3.2. Then it suffices to show that g∗(T ) is well-defined. This later follows

from the proof of Theorem 5.5 in [43]. �

For a map f : Pk → Pk, Russakovskii and Shiffman [67] defined the pullback of a

linear subspace V of codimension p in Pk for which π−1
2 (V )∩Γf has codimension ≥ p

in Γf . It can be easily seen that this is a special case of Corollary 3.1. In the same

paper, we also find a definition for pullback of a measure having no mass on πY (Cf ).

Our definition coincides with theirs

Theorem 3.8. Let X and Y be two compact Kähler manifolds. Let f : X → Y be

a dominant meromorphic map. Let T be a positive measure having no mass on πY (Cf ).

Then f ∗(T ) is well-defined, and coincides with the usual definition. Moreover, if T

has no mass on proper analytic subvarieties of Y , then f ∗(T ) has no mass on proper

analytic subvarieties of X.
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Proof. Let T be a positive measure on Y having no mass on πY (Cf ). Let Kn be

a good approximation scheme by C2 forms. Then we will show that as n converges

to ∞, any limit point of [Γf ] ∧ π∗Y (Kn(T )) has no mass on Cf . Thus limn→∞[Γf ] ∧

π∗Y (Kn(T )) = (πY |Γf
)∗(T ) where the RHS is defined in [43]. Then f ∗(T ) is well-

defined, and moreover equals to the current f o(T ) defined in [43], thus satisfies all

the conclusions of Theorem 3.8.

Now we proceed to prove that any limit point τ of [Γf ] ∧ π∗Y (Kn(T )) has no mass

on Cf . This is equivalent to showing that for a smooth (dim(X), dim(X)) form α on

X × Y , and for a sequence θj of smooth functions on X × Y having the properties:

0 ≤ θj ≤ 1, θj = 1 on a neighborhood of Cf , and support of θj converges to Cf then:

lim
j→∞

lim
n→∞

∫
X×Y

θjα ∧ [Γf ] ∧ π∗Y (Kn(T )) = 0.

By properties of good approximation schemes by C2 forms, we can write the above

equality as

(5) lim
j→∞

lim
n→∞

∫
X×Y

T ∧ Kn((πY )∗(θjα ∧ [Γf ])) = 0.

Writing α as the difference of two positive smooth forms, we may assume that α is

positive. Now α is a positive smooth form, since 0 ≤ θj ≤ 1 for all j, we can bound the

function (πY )∗(θjα ∧ [Γf ]) by a multiplicity of (πY )∗(ω
dim(X)
X×Y ∧ [Γf ]) independently of

j. The later is a constant, thus (πY )∗(θjα∧ [Γf ]) is a positive bounded function. Then

Kn((πY )∗(θjα∧ [Γf ])) are C2 functions uniformly bounded w.r.t. j and n. Moreover,

the support of Kn((πY )∗(θjα ∧ [Γf ])) converges to πY (Cf ) as j → ∞, independent

of n. Because T has no mass on πY (Cf ), we can then apply Lebesgue’s dominated

convergence theorem to obtain (5). �

Alessandrini - Bassanelli [2] also defined the strict transform of a positive pluri-

subharmonic current of bidimension (1, 1) (i.e. a positive current T of bidimension

(1,1) so that ddcT ≥ 0) by a modification. We can extend this to all bidimensions
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and all meromorphic maps. Given a DSH current T on Y , we say that the strict

transform of T by a dominant meromorphic map f : X → Y is well-defined if the

current [Γf − Cf ] ∧ π∗Y (T ) (which is a well-defined current on X × Y − Cf , see Dinh

and Sibony [43]) has locally finite mas across Cf . In this case, we define the strict

transform of the current T to be the push-forward by πX of the trivial extension of

[Γf − Cf ] ∧ π∗Y (T ) to X × Y .

Theorem 3.9. Let f : X → Y be a dominant meromorphic map between compact

Kähler manifolds. Let T be a positive pseudo-pluri-subharmonic current, that is T is

a positive current and ddcT ≥ −γ for some smooth form γ. Then the strict transform

of T is well-defined.

Proof. If ddc(T ) ≥ −γ where γ is a smooth form, then by the properties of

good approximation schemes, there is a smooth form γ̃ so that ddcK±n (T ) ≥ −γ̃ for

all n. Then ddcπ∗Y [K±n (T )] ≥ −π∗Y (γ̃) for all n. Let (p, p) be the bidegree of T . By

Lemma 3.4, there is a closed smooth form α and a strongly negative current S so that

[Γf ] ∧ (π∗X(ωX) + π∗Y (ωY ))dim(Y )−p ≤ α + ddcS. Therefore, the masses of the positive

currents [Γf ] ∧ π∗YK±n (T ), which are

∫
X×Y

[Γf ] ∧ (π∗X(ωX) + π∗Y (ωY ))dim(Y )−p ∧ π∗YK±n (T )

≤
∫
X×Y

α ∧ π∗YK±n (T ) +

∫
X×Y

S ∧ ddcπ∗YK±n (T )

≤
∫
X×Y

α ∧ π∗YK±n (T ) +

∫
X×Y

S ∧ π∗Y (−γ̃),

are uniformly bounded. Therefore, the current [Γf − Cf ] ∧ π∗Y (T ) (which is the limit

on Γf − Cf of [Γf ] ∧ π∗Y (K+
n (T )−K−n (T )), see [43]) has locally bounded mass across

Cf . By definition, the strict transform of T by the map f is well-defined. �
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4. Applications: invariant currents

4.1. Generalities on invariant currents. Throughout this subsection, we let

X be a compact Kähler manifold of dimension k, and let f : X → X be a dominant

meromorphic map. Let T be a current on X which can be pulled back by f . We say

that T is an invariant current (in the broad sense) for f if there is a number λ so

that f ∗(T ) = λT . We have a similar definition when using the push forward instead

of the pullback. Let δp(f) be the p − th dynamical degree of f (see the preliminary

chapter).

The map f is called p-algebraic stable (see, for example [44]) if (f ∗)n = (fn)∗ as

linear maps on Hp,p(X) for all n = 1, 2, . . .. When this condition is satisfied, it follows

that δp(f) = rp(f), thus helps in determining the p-th dynamical degree of f .

There is also the related condition of p-analytic stable (see [44]) which requires

that

1) (fn)∗(T ) is well-defined for any positive closed (p, p) current T and any n ≥ 1.

2) Moreover, (fn)∗(T ) = (f ∗)n(T ) for any positive closed (p, p) current T and any

n ≥ 2.

For any selfmap f then f is k-algebraic stable where k =dimension of X. If f is a

surjective holomorphic self-map then it is a finite-to-one map, and hence is p-analytic

stable for any p. Since Hp,p(X) is generated by classes of positive closed smooth (p, p)

forms, p-analytic stability implies p-algebraic stability. For the converse of this, we

have the following observation

Proposition 3.3. If π1(Cf ) has codimension ≥ p, then f is p-analytic stable iff it

is p-algebraic stable and satisfies condition 1) above so that (f ∗)n(α) is positive closed

for any positive closed smooth (p, p) form and for any n ≥ 1. Hence 1-algebraic

stability is the same as 1-analytic stability.
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Proof. First, let α be a positive closed smooth (p, p) form. Then (fn)∗(α) is a

current with L1 coefficients. Then the assumption that (f ∗)n(α) is a positive closed

current and the fact that (f ∗)n(α) = (fn)∗(α) outside a proper analytic set imply

that (f ∗)n(α) ≥ (fn)∗(α). But by the p-algebraic stability, these currents have the

same cohomology class and hence must be the same. Hence the conclusion of Remark

3.3 holds for positive closed smooth (p, p) forms.

Now let T be a positive closed (p, p) current and let n be a positive integer.

By Definition 3.2, there are positive closed smooth (p, p) forms T±j so that ||T±j || is

uniformly bounded, T+
j − T−j weakly converges to T , and

(fn)∗(T ) = lim
j→∞

(fn)∗(T+
j − T−j ).

By the first paragraph of the proof (fn)∗(T+
j −T−j ) = (f ∗)n(T+

j −T−j ) for any n and j.

Because π1(Cf ) has codimension ≥ p, the continuity property in Theorem 3.5 implies

that

lim
j→∞

(f ∗)n(T+
j − T−j ) = (f ∗)n(T ).

Therefore (fn)∗(T ) = (f ∗)n(T ) as wanted. �

A more general condition, called ddc-p stability, seems to be natural for the prob-

lem of finding invariant (p, p) currents for a self-map f .

Definition 3.3. We say that f satisfies the ddc-p stability condition if the fol-

lowing holds: For any smooth (p − 1, p − 1) form α and for any n, f ∗((fn)∗ddcα) is

well-defined, and moreover f ∗((fn)∗ddcα) = (fn+1)∗(ddcα).

In general, condition of ddc-p stability has no relation with condition of p-algebraic

stability. On the one hand, the ddc-p stability condition requires no constraints on

the action of f ∗ on Hp,p(X), because the cohomology class of ddc(α) is zero. On the

other hand, it asks for the possibility of iterated pull-back ddc(α) by f . Any map f
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is ddc-1 stable, whether being or not 1-algebraic stable. If f is p-analytic stable then

f is ddc-p stable. Using the method in Step 1 of the proof of Lemma 3.8, it can be

shown that the linear pseudo-automorphisms in [5] are ddc-2 stable. We suspect that

these pseudo-automorphisms are also 2-analytic stable.

Lemma 3.5. Assume that f satisfies the ddc-p stability condition. Let λ be a

positive real number. If |λ| > δp−1(f), then for any smooth (p−1, p−1) form α, there

is a current Rα of order 0, so that f ∗(ddcRα) is well-defined, and moreover

f ∗(ddcRα)− λddcRα = λddcα.

Proof. Define β = −α, and consider

Rn =
n∑
j=0

(f j)∗(β)

λj
.

Since β is a smooth (p− 1, p− 1) form, there is a constant A > 0 so that −Aωp−1
X ≤

β ≤ Aωp−1
X . It follows that

Rα =
∞∑
j=0

(f j)∗(β)

λj

is a well-defined current which is a difference of two positive currents, hence of order

0. Moreover −Sn ≤ Rn −R ≤ Sn, where

Sn = A
∞∑

j=n+1

(f j)∗(ωp−1
X )

|λ|j
.

The Sn are well-defined positive closed (p−1, p−1) currents, because it is well-known

(see for example Chapter 2 in [56]) that

lim
n→∞

||(fn)∗(ωp−1
X )||1/n = δp−1(f),

and the latter is < |λ| by assumption. The above inequality also shows that ||Sn|| → 0

as n→∞. The ddc-p stability condition shows that f ∗(ddcRn) is well-defined for any



3. PULLBACK OF CURRENTS BY MEROMORPHIC MAPS 55

n, and moreover f ∗(ddcRn)− λddcRn+1 = −λddcβ = λddcα. Applying Theorem 3.4,

using that Rn weakly converges to Rα, we have

f ∗(ddcRα)− λddcRα = λddcα.

�

We have the following abstract result on invariant (p, p) currents.

Theorem 3.10. Assume that f : X → X satisfies the ddc-p stability condition.

Let λ be a real eigenvalue of f ∗ : Hp,p(X) → Hp,p(X), and let 0 6= θλ ∈ Hp,p(X) be

an eigenvector with eigenvalue λ. Assume moreover that |λ| > δp−1(f) and let s ≥ 2

be an integer. Then any of the following statements is equivalent to each other:

1) There is a closed (p, p) current T of order s with {T} = θλ so that f ∗(T ) is

well-defined, and moreover f ∗(T ) = λT .

2) There are a smooth (p− 1, p− 1) form α and a closed (p, p) current T of order

s with {T} = θλ so that f ∗(T ) is well-defined, and moreover f ∗(T ) = λT + λddc(α).

3) For any smooth (p− 1, p− 1) form α, there is a closed (p, p) current T of order

s with {T} = θλ so that f ∗(T ) is well-defined, and moreover f ∗(T ) = λT + λddc(α).

4) There is a closed (p, p) current T of order s with {T} = θλ so that f ∗(T ) is

well-defined, and moreover f ∗(T )− λT is a smooth form.

Proof. All of the equivalences follow easily from Lemma 3.5.

1) ⇒ 3): Let T0 be a closed (p, p) current of order s with {T0} = θλ so that

f ∗(T0) is well-defined, and f ∗(T0) − λT0 = 0. For any smooth (p − 1, p − 1) form α

on X, let Rα be the current constructed in Lemma 3.5. Then T = T0 + ddc(Rα) is

a closed (p, p) current of order s with {T} = θλ so that f ∗(T ) is well-defined, and

f ∗(T )− λT = ddc(Rα).

3)⇒ 2: Obviously.
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2)⇒ 1): Let α0 be a smooth (p−1, p−1) form, and let T0 be a closed (p, p) current

of order s with {T0} = θλ so that f ∗(T0) is well-defined, and f ∗(T0)− λT0 = ddc(α0).

Let Rα be the current constructed in Lemma 3.5. Then T = T0 − ddc(Rα) is a

closed (p, p) current of order s with {T} = θλ so that f ∗(T ) is well-defined, and

f ∗(T )− λT = 0.

Finally, that 2) and 4) are equivalent follows from the ddc lemma, since the current

f ∗(T )− λT is a smooth form cohomologous to 0. �

4.2. Applications. Now we give some explicit examples on the existence of in-

variant currents.

Lemma 3.6. Let X be a compact Kähler manifold with a Kähler form ωX and

f : X → X be a dominant meromorphic map. Assume that π1(Cf ) has codimension

≥ p and f is p-analytic stable. Let 0 6= θ be an eigenvector with respect to the

eigenvalue λ = rp(f) the spectral radius of the linear map f ∗ : Hp,p(X) → Hp,p(X).

Assume moreover that ||(fn)∗(ωpX)|| ∼ λn as n → ∞. Then there is a closed (p, p)

current T which is a difference of two positive closed (p, p) currents, and has the

properties that {T} = θ and f ∗(T ) = λT .

Remark: Since f is p-analytic stable, the condition on ||(fn)∗(ωpX)|| can be easily

checked by looking at the Jordan form for f ∗ (see e.g. [56]). Variants of Lemma 3.6

are also available. Lemma 3.6 generalizes the results for the standard case p = 1,

and for the case X = Pk in Dinh and Sibony [44]. Lemma 3.6 can be applied to the

pseudo-automorphism JX in Subsection 5.1 for p = 2, and may be applicable to many

other pseudo-automorphisms e.g. those in [5]. The method of the proof of Lemma

3.8 may be used to check the p-analytic stability of a meromorphic self-map.

Proof. Since π1(Cf ) has codimension ≥ p, it follows from Theorem 3.5 any posi-

tive closed (p, p) current can be pulled back, and the pullback operator is continuous
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with respect to the weak topology on positive closed (p, p) currents. We can rep-

resent θ by a difference α = α+ − α− of two positive closed smooth (p, p) forms

α±. Since f is p-analytic stable, it follows that (fn)∗(α±) = (f ∗)n(α±) are positive

closed (p, p) currents for any n ≥ 1. Moreover there is a constant C1 > 0 so that

||(f ∗)n(α±)|| = ||(fn)∗(α±)|| ≤ C1rp(f)n = C1λ
n (see e.g [56]). We follow the stan-

dard construction of an invariant current under these assumptions (see [68] and [19]).

Consider the currents TN = T+
N − T

−
N , where

T±N =
1

N

N−1∑
j=0

(f ∗)j(α±)

λj
.

Then T±N are positive closed (p, p) currents with uniformly bounded masses, thus

after passing to a subsequence, we may assume that they converge to T±. We define

T = T+ − T−. Since {TN} = {α} for any N , we also have {T} = {α}. Since

f ∗(T±N )− λT±N converges to 0, it follows that f ∗(T ) = λT . �

Let us continue with an application concerning invariant positive closed currents

whose supports are contained in pluripolar sets.

Corollary 3.4. Let f1 : Pk1 → Pk1 and f2 : Pk2 → Pk2 be dominant rational

maps not 1-algebraic stable, of degrees d1 and d2 respectively. Then there is a nonzero

positive closed (2, 2) current T on Pk1 × Pk2 with the following properties:

1) f ∗(T ) is well-defined and moreover f ∗(T ) = d1d2T , here f = f1 × f2.

2) The support of T is pluripolar.

The existence of Green currents T1 and T2 for f1 and f2 were proved by Sibony

[68] (see also [19]). The current T is in fact the product T1 × T2. Its support is

contained in a countable union of analytic varieties of codimension 2 in Pk1 × Pk2 .
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Proof. Let T1 and T2 be the Green (1, 1) currents for the maps f1 and f2 as

constructed in Sibony [68], respectively. Then we can write

Ti =
∑
j

λj,i[Vj,i]

for i = 1, 2, where λj,i > 0 and Vj,i are irreducible hypersurfaces in Pki . Moreover

f ∗(T1) = d1T1 and f ∗(T2) = d2T2. We choose T = T1 × T2. Consider the finite

summands

SN,i =
N∑
j=0

λj,i[Vj,i].

Then f−1(SN,1 × SN,2) = f−1
1 (SN,1)× f−1

2 (SN,2) has codimension 2 in Pk1 × Pk2 , thus

f ∗(SN,1 × SN,2) are well-defined by Corollary 3.1. Since T1 × T2 − SN,1 × SN,2 are

positive closed currents decreasing to 0, it follows by Theorem 3.4 that f ∗(T1 × T2)

is well-defined and moreover

f ∗(T1 × T2) = lim
N→∞

f ∗(SN,1 × SN,2).

It remains to show that f ∗(T1 × T2) = d1d2T1 × T2. To this end, first we show that

f ∗(SN,1 × SN,2) = f ∗1 (SN,1) × f ∗2 (SN,2) for any N . By the results in [44] (see also

the last section), there are positive closed (1, 1) currents Wj,N,1 on Pk1 and Wj,N,2

on Pk2 with uniformly bounded norms so that SN,1 = limj→∞Wj,N,1 and SN,2 =

limj→∞Wj,N,2. Moreover, we can choose these approximations in such a way that

support of Wj,N,1 converges to SN,1 and support of Wj,N,2 converges to SN,2. Then

limj→∞Wj,N,1 × Wj,N,2 = SN,1 × SN,2, and Wj,N,1 × Wj,N,2 has uniformly bounded

mass and locally uniformly converges to 0 on Pk1 × Pk2 − SN,1 × SN,2. Hence we can

apply Theorem 3.6 to obtain that

f ∗(SN,1 × SN,2) = lim
j→∞

f ∗(Wj,N,1 ×Wj,N,2) = lim
j→∞

f ∗1 (Wj,N,1)× f ∗2 (Wj,N,2)

= f ∗1 (SN,1)× f ∗2 (SN,2).
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Having this, it follows from the continuity of pullback on positive closed (1, 1) currents

and the definitions of T1 and T2 that

f ∗(T1 × T2) = lim
N→∞

f ∗(SN,1 × SN,2) = lim
N→∞

f ∗1 (SN,1)× f ∗2 (SN,2)

= f ∗1 (T1)× f ∗2 (T2) = d1d2T1 × T2.

�

Corollary 3.5. Let X be a compact Kähler manifold of dimension k, and let

f : X → X be a dominant meromorphic map. Assume that f has large topological

degree, i.e. δk(f) > δk−1(f). Then f has an invariant positive measure µ, i.e. f ∗(µ) =

δk(f)µ.

The result of Corollary 3.5 belongs to Guedj [57] and Dinh-Sibony [41], who

showed in addition that the measure µ has no mass on proper analytic subvarieties.

Proof. It is well-known that for any smooth (k, k) form θ then (fn)∗(θ) =

(f ∗)n(θ) for all n (see for example [57] or Theorem 3.8). Hence f satisfies ddc-k

stability condition. As in [57], we can find a smooth probability measure θ so that

f ∗(θ) is again a smooth probability measure. Hence f ∗(θ)− δk(f)θ = ddc(ϕ), where

ϕ is a smooth (p− 1, p− 1) form. Hence we can apply Theorem 3.10. �

Corollary 3.6. Let X be a compact Kähler manifold, and let f : X → X be a

surjective holomorphic map. Let λ be a real eigenvalue of f ∗ : Hp,p(X) → Hp,p(X),

and let 0 6= θλ ∈ Hp,p(X) be an eigenvector with eigenvalue λ. Assume moreover that

|λ| > δp−1(f). Then there is a closed current T of order 2 with {T} = θλ so that

f ∗(T ) is well-defined, and moreover f ∗(T ) = λT .

Proof. Let θ be a smooth form then f ∗(θ) is again a smooth form since f is

holomorphic. Then we can use the same arguments as that in the proof of Corollary

3.5. �
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Note that in Corollary 3.6 we do not require that λ = δp or that the cohomology

class θλ is presented by a positive closed current.

Example 3: Let X = P2
w1
× P2

w2
× P2

w3
, and let f : X → X to be f(w1, w2, w3) =

(P2(w2), P3(w3), P1(w1)) where P1, P2, P3 : P2 → P2 are surjective holomorphic maps

of degrees ≥ 2, and not all of them are submersions (For example, we can choose one

of them to be P [z0 : z1 : z2] = [zd0 : zd1 : zd2 ] for some integer d ≥ 2). Corollary 3.6 can

be applied to find invariant currents for f .

5. The map JX and open questions

5.1. The map JX. Through out this subsection, let X be the blowup of P3 along

4 points e0 = [1 : 0 : 0 : 0], e1 = [0 : 1 : 0 : 0], e2 = [0 : 0 : 1 : 0], e3 = [0 : 0 : 0 : 1];

J : P3 → P3 is the Cremona map J [x0 : x1 : x2 : x3] = [1/x0 : 1/x1 : 1/x2 : 1/x3], and

let JX be the lifting of J to X.

Remark 3.2. The map JX was given in Example 2.5 page 33 in [56] where the

author showed that the map J∗X : H2,2(X) → H2,2(X) does not preserve the cone of

cohomology classes generated by positive closed (2, 2) currents.

For 0 ≤ i 6= j ≤ 3, Σi,j is the line in P3 consisting of points [x0 : x1 : x2 : x3] where

xi = xj = 0, and Σ̃i,j is the strict transform of Σi,j in X.

Let E0, E1, E2, E3 be the corresponding exceptional divisors of the blowup X →

P3, and let L0, L1, L2, L3 be any lines in E0, E1, E2, E3 correspondingly. Let H be a

generic hyperplane in P3, and let H2 be a generic line in P3. Then H,E0, E1, E2, E3

are a basis for H1,1(X), and H2, L0, L1, L2, L3 are a basis for H2,2(X). Intersection
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products in complementary dimensions are (see for example Chapter 4 in [54]):

H.H2 = 1, H.L0 = 0, H.L1 = 0, H.L2 = 0, H.L3 = 0,

E0.H
2 = 0, E0.L0 = −1, E0.L1 = 0, E0.L2 = 0, E0.L3 = 0,

E1.H
2 = 0, E1.L0 = 0, E1.L1 = −1, E1.L2 = 0, E1.L3 = 0,

E2.H
2 = 0, E2.L0 = 0, E2.L1 = 0, E2.L2 = −1, E1.L3 = 0,

E3.H
2 = 0, E3.L0 = 0, E3.L1 = 0, E3.L2 = 0, E3.L3 = −1.

The map J∗X : H1,1(X) → H1,1(X) is not hard to compute (see for example the

computations in Example 2.5 in [56]). We let Σi be the linear subspace of P3 defined

by the equation zi = 0, and let Σ̃i be the strict transform of Σ in X. Then since

J−1
X (Ei) = Σ̃i, J

−1
X (Σ̃i) = Ei and the class of H is π∗(Σi) = Σ̃i +

∑
j 6=iEj, we find

J∗X(H) = 3H − 2E0 − 2E1 − 2E2 − 2E3,

J∗X(E0) = H − E1 − E2 − E3,

J∗X(E1) = H − E0 − E2 − E3,

J∗X(E2) = H − E0 − E1 − E3,

J∗X(E3) = H − E0 − E1 − E2.

If x ∈ H1,1(X) and y ∈ H2,2(X), since J2
X =the identity map on X, we have the

duality (J∗Xy).x = y.(J∗Xx). Thus from the above data, we can write down the map

J∗X : H2,2(X)→ H2,2(X):

J∗X(H2) = 3H2 − L0 − L1 − L2 − L3,

J∗X(L0) = 2H2 − L1 − L2 − L3,

J∗X(L1) = 2H2 − L0 − L2 − L3,

J∗X(L2) = 2H2 − L0 − L1 − L3,

J∗X(L3) = 2H2 − L0 − L1 − L2.
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Corollary 3.7. For 0 ≤ i 6= j ≤ 3, let Σi,j be the line in P3 consisting of points

[x0 : x1 : x2 : x3] where xi = xj = 0. Let Σ̃i,j be the strict transform of Σi,j in X.

For any positive closed (2, 2) current T , J∗X(T ) is well-defined. Moreover, J∗X([Σ̃0,1]) =

−[Σ̃2,3] and J∗X([Σ̃2,3]) = −[Σ̃0,1].

Proof. The restriction JX : X−
⋃

Σ̃i,j → X−
⋃

Σ̃i,j is a biholomorphic map, as

can be seen by using local coordinate projections for the blowup π near the exceptional

divisors Ei’s. Moreover it can be shown that JX(Σ̃i,j) = Σ̃3−i,3−j, and every point on

Σ̃i,j blows up to Σ̃3−i,3−j. Hence π1(CJX ) =
⋃

Σ̃i,j. Therefore the map JX satisfies

Theorem 3.5 for p = 2. Thus if T is a positive closed (2, 2) current on X then J∗X(T )

is well-defined. For an alternative proof of this fact, see Lemma 3.7 below.

It remains to show that J∗X [Σ̃0,1] = −[Σ̃2,3]. Since J−1
X (Σ̃0,1) = Σ̃2,3, by Theorem

3.6 there is a number λ so that J∗X [Σ̃0,1] = λ[Σ̃2,3]. To determine λ, we need to know

J∗X{Σ̃0,1}. We have {Σ̃0,1} = {H2 − L2 − L3}, hence from the above data we have

J∗X{Σ̃0,1} = J∗X{H2} − J∗X{L2} − J∗X{L3} = {−H2 + L0 + L1} = −{Σ̃2,3},

thus λ = −1, and J∗X [Σ̃0,1] = −[Σ̃2,3]. �

The following result gives an alternative proof to the conclusions of Corollary 3.7.

In its proof we will make use of the space Y defined in the statement of Proposition 3.4

below. Here π : Y → X is the blowup ofX along all submanifolds Σ̃i,j (1 ≤ i < j ≤ 3).

Then the lifting map JY of J to Y is an involutive automorphism. Moreover, if we let

Si,j denote the exceptional divisor of Y over Σ̃i,j, then JY (S0,1) = S2,3, JY (S0,2) = S1,3,

and JY (S0,3) = S1,2.

Lemma 3.7. Let T+
n and T−n be positive closed smooth (2, 2) forms on X, so that

i) ||T+
n ||, ||T−n || are uniformly bounded,

and

ii) T+
n − T−n ⇀ [Σ̃0,1].
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Then J∗X(T+
n − T−n ) ⇀ −[Σ̃2,3].

As a consequence, if we replace [Σ̃0,1] in i) and ii) above by any positive closed

(2, 2) current T then J∗X(T+
n − T−n ) converges to J∗X(T ).

Proof. Let τ+
n = π∗(T+

n ) and τ−n = π∗(T−n ), which are positive closed currents on

Y . By assumption i), ||τ+
n || and ||τ−n || are uniformly bounded. Thus we may assume

that τ+
n ⇀ τ+ and τ−n ⇀ τ−, where τ+ and τ− are positive closed currents on Y .

Since JY is a biholomorphic map, we can pull-back any current on Y by JY . It is

not hard to see that

J∗X(T+
n ) = π∗(J

∗
Y τ

+
n ),

J∗X(T−n ) = π∗(J
∗
Y τ
−
n ).

Hence

J∗X(T+
n − T−n ) ⇀ π∗(J

∗
Y (τ+ − τ−)).

We need to show that the latter current is −[Σ̃2,3]. To this end, it suffices to show

that support of π∗(J
∗
Y (τ+−τ−)) is in Σ̃2,3. In fact, then we will have π∗(J

∗
Y (τ+−τ−)) =

λ[Σ̃2,3], and the computation on cohomology shows that λ = −1.

It is not hard to see that support of τ+−τ− is contained in the union of Si,j’s (1 ≤

i < j ≤ 3). Let τi,j = τ+|Si,j
− τ−|Si,j

with support in Si,j so that τ =
∑

1≤i<j≤3 τi,j.

In H2,2(Y ) we have:

π∗{Σ̃0,1} = {τ+ − τ−} =
∑
i,j

{τi,j},

here π∗{Σ̃0,1} can be represented by currents with support in S0,1. Moreover, by

considering the push-forwards π∗(τ
+
n − τ−n ), it follows that π∗(τi,j) = 0 where (i, j) 6=

(0, 1). It can be checked that each fiber Si,j is a product Si,j ' P1 × P1, hence by

Küneth’s theorem H2,2(Si,j) is generated by a ”horizontal curve” αi,j and a ”vertical

curve” (or fiber) βi,j. Here the properties of ”horizontal curve” and ”vertical curve”
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that we use are that π∗(αi,j) = Σ̃i,j and π∗(βi,j) = 0. Hence there are numbers ai,j and

bi,j so that the cohomology class of τi,j − ai,jαi,j − bi,jβi,j is zero. For (i, j) 6= (0, 1),

since π∗(τi,j) = 0, it follows that

ai,j{Σ̃i,j} = π∗{ai,jαi,j + bi,jβi,j} = π∗{τi,j} = {π∗(τi,j)} = 0.

Hence ai,j = 0 for (i, j) 6= (0, 1).

Note that a non-zero (2, 2)-cohomology class in H2,2(Y ) represented by currents

with supports in S0,1 can not be represented by a linear combinations of ”vertical

curves” with support in
⋃

(i,j) 6=(0,1) Si,j: Assume that

{a0,1α0,1 + b0,1β0,1 +
∑

(i,j)6=(0,1)

bi,jβi,j} = 0

in H2,2(Y ). Push-forward by the map π implies that a0,1{Σ̃0,1} = 0 in H2,2(X), and

hence a0,1 = 0. Thus {
∑
bi,jβi,j} = 0 in H2,2(Y ). Use the fact that {Si,j}.{βk,l} = −1

if (k, l) = (i, j), and = 0 otherwise (see for example Chapter 4 in [54]), we imply that

bi,j = 0 for all (i, j) as claimed.

Hence it follows that {τi,j} = 0 in H2,2(Y ) for (i, j) 6= (0, 1).

We have

π∗(J
∗
Y (τ+ − τ−)) =

∑
i,j

π∗(J
∗
Y τi,j),

where support of π∗(J
∗
Y τi,j) is contained in Σ̃3−i,3−j. Here we use the convention that

Σ̃k,l := Σ̃l,k if k > l. Since π∗(J
∗
Y τi,j) is a normal (2, 2) current, it follows from the

structure theorem for normal currents that there is λi,j ∈ R so that π∗(J
∗
Y τi,j) =

λi,j[Σ̃3−i,3−j]. If (i, j) 6= (0, 1) then {τi,j} = 0 in H2,2(Y ), thus {π∗(J∗Y τi,j)} = 0 in

H2,2(X), which implies λi,j = 0 for such (i, j)’s. Hence

π∗(J
∗
Y (τ+ − τ−)) = π∗(J

∗
Y τ0,1)

has support in Σ̃2,3 as wanted. �
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Proposition 3.4. Let X be the space constructed in Corollary 3.7. Let π : Y → X

be the blowup of X along all submanifolds Σ̃i,j (1 ≤ i < j ≤ 3). Then there is a

positive closed (2, 2)-current T on X with L1 coefficients so that: in H2,2(Y ),

{πo(T )} 6= π∗{T}.

Here the operator πo is defined in Dinh and Nguyen [35]. In this case, in fact πo(T )

is also the operator defined in Dinh and Sibony [43].

Proof. We assume in order to reach a contradiction that for any positive closed

(2, 2) current T on X with L1-coefficients then {πo(T )} = π∗{T} in H2,2(Y ).

By regularization theorem of Dinh and Sibony, there is a sequence T+
n and T−

of positive closed (2, 2) currents with L1-coefficients such that ||T+
n || are uniformly

bounded and T+
n ⇀ T−+ [Σ̃0,1]. By the assumption we have {πo(T+

n )} = π∗{T+
n } for

any n, and {πo(T−)} = π∗{T−}. Now for the maps JX and JY considered above, it

is not hard to see that JoX = π∗J
∗
Y π

o. Thus, we also have {JoX(T+
n )} = J∗X{T+

n } and

{JoX(T−)} = J∗X{T−}.

Let τ+ be a cluster point of JoX(T+
n ). Then it is easy to see that

τ+ ≥ JoX(T− + [Σ̃0,1]) = JoX(T−) + JoX([Σ̃0,1]) = JoX(T−).

But then this contradicts the fact that in H2,2(X):

{τ+} = lim
n→∞
{JoX(T+

n )} = lim
n→∞

J∗X{(T+
n )}

= J∗X{T−}+ J∗X{Σ̃0,1} = {JoX(T−)} − {[Σ̃2,3]},

here we used the assumption that J∗X{(T+
n )} = {JoX(T+

n )} and J∗X{(T−)} = {JoX(T−)}.

�

Proposition 3.5. Let X be the space constructed in Corollary 3.7. There is no

sequence T+
n and T− of positive closed smooth (2, 2) forms on X such that
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i) ||T+
n || are uniformly bounded

ii) T+
n − T− ⇀ [Σ̃0,1].

Remark 3.3. In Example 6.3 of the paper [13] of Bost, Gillet, and Soule, a related

result was given.

Proof. Use the same argument as that in the proof of Proposition 3.4, but now

use that if T±n are positive closed smooth forms then J∗X(T±n ) = JoX(T±n ), and hence

{JoX(T±n )} = J∗X{T±n }. �

We end this Subsection by showing that the map JX is 2-analytic stable.

Lemma 3.8. JX is 2-algebraic stable and (J∗X)2 = Id = (J2
X)∗ on positive closed

(2, 2) currents.

Proof. Since JX has no exceptional hypersurface, JX is 1-algebraic stable. Be-

cause JX = J−1
X , it follows by duality that JX is also 2-algebraic stable. Since J2

X = Id,

it remains to check that (J∗X)2 = Id. Define A =
⋃
i 6=j Σ̃i,j.

1) First we show that for a DSH1 current R then:

(6) (J∗X)2(R) = R.

For this end, first we show that (J∗X)2(R) = R on X − A. Since J∗X is continuous

in the DSH1 topology by Theorem 3.5, using the approximation theorem for DSH

currents it suffices to show (6) for a smooth (1, 1) form R. In that case it is easy to

see, since (J∗X)2(R) is determined by its restriction on X −A, and on X −A it is not

other than the usual pullback of smooth forms (JX |∗X−A)2(R).

Having (J∗X)2(R) = R on X − A, then (6) follows by the Federer type of support

in [3].

2) It follows from 1) that if T is a positive closed (2, 2) current on X, then

(J∗X)2(T )− T depends only on the cohomology class of T . In fact, if T ′ is a positive
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closed (2, 2) current having the same cohomology class as T , then T − T ′ = ddc(R)

for a DSH1 current R. Then from 1)

(J∗X)2(T )− (J∗X)2(T ′) = ddc(J∗X)2(R) = ddc(R) = T − T ′.

3) From 2), to prove Lemma 3.8 it suffices to show it for a set of positive closed

currents whose cohomology classes generate H2,2(X). For such a set, we can consider

the currents of integrations on a generic line in P3, a generic line in the exceptional

divisors E0, E1, E2, E3, and the line Σ̃i,j. In these cases, the wanted equality is easy

to be checked. �

5.2. Some open questions. Let X be a compact Kähler manifold, and let

f : X → X be a dominant meromorphic map.

A) Let T be a positive closed (p, p) current on X with Siu’s decomposition T =

R +
∑

j λj[Vj]. Let E(T ) be as in Theorem 3.7. Assume that for any irreducible

analytic V contained in E(T ) then f−1(V ) has codimension ≥ p. Is f ∗(T ) well-

defined? If so, is f ∗(R) positive? Note that by Corollary 3.7, f ∗(T ) may not be

positive though.

B) Assume that π1(Cf ) has codimension ≥ p.

a) When X = Pk, [44] showed that π1(Cfn) has codimension ≥ p for all n. Is the

same true for a general X?

b) Does f satisfy ddc-p stability condition? This holds for p = 1.

c) Using a) and the fact that when X = Pk then f ∗ preserves the convex cone

of positive (p, p) currents, [44] showed that if moreover f is p-algebraic stable then

(fn)∗ = (f ∗)n for all n. Does the same conclusion hold when X is an arbitrary

compact Kähler manifold? Lemma 3.8 shows that the answer to this question is

positive when f = JX .
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C) Can the constructions of invariant currents in Section 4 be extended to other

cases, for example for a map in Question B?
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