

Bells, Whistles, and Alarms:
HCI Lessons Using AJAX
for a Page-turning Web Application

Abstract
This case study describes creating a version of METS
Navigator, a page-turning web application for multi-
part digital objects, using an AJAX library with user
interface components. The design for this version
created problems for customized user interactions and
accessibility problems for users, including those using
assistive technologies and mobile devices. A review of
the literature considers AJAX, accessibility, and
universal usability and possible steps to take moving
forward to correct these problems in METS Navigator.

Keywords
AJAX, accessibility, universal usability

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
interfaces - user-centered design, standardization.

General Terms
Design, human factors, standardization

Introduction
AJAX (Asynchronous JavaScript and XML) is a widely
used method for developing Web 2.0 applications

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Juliet L. Hardesty
User Interface Design Specialist
Digital Library Program
Indiana University
Herman B Wells Library, W501
1320 E. 10th Street
Bloomington, IN 47405 USA
jlhardes@indiana.edu

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

827

(called Rich Internet Applications, or RIA’s), both to
enhance certain features and interactions on a web site
as well as for interactive user interface components. A
variety of AJAX libraries exist with different types of
user interface components that allow for new or more
dynamic ways of interacting with content on the web
(see Dojo, Ext JS, GWT, jQuery, script.aculo.us, and
YUI for just a few examples of the many AJAX libraries
offering user interface components). The following
case study considers a page-turning web application,
METS Navigator, developed by the Indiana University
Digital Library Program. Open-source libraries from Ext
JS[4] were used to create the latest version of this web
application, meant to enhance portability and ease of
use by implementers and end-users.

Using AJAX creates dynamic HTML (HTML produced by
JavaScript at the time the page is rendered in the
browser), which is not viewable in the source code of a
web page without the use of special tools. This
dynamic HTML is, however, used by screen reading
software and other assistive technologies when
interpreting the content of a web page. When
evaluating the code created by the AJAX libraries used
in METS Navigator and addressing accessibility issues
to ensure that METS Navigator was, indeed, usable by
everyone, problems with dynamic HTML, accessibility,
and mobile device usability were uncovered. From this
experience, lessons learned and tips to avoid similar
problems are shared for the benefit of the human-
computer interaction (HCI) community.

Literature Review
In reviewing the literature on AJAX and accessibility,
problems of accessible use seem inevitable. Discussing
in 2007 how a standardized approach is needed to

incorporate the Semantic Web into Web 2.0
development, Cooper acknowledges that “Web 2.0 is an
emergent phenomenon rather than a specific
technology or set of technologies” and, thus, “there is
no single designer or responsible authority that ensures
that the technologies and practices support
accessibility.”[3] Likewise, Lembree discusses in 2008
and again in 2010 specific problems in making AJAX
accessible: JavaScript is required, web conventions
such as the Back button and bookmarking are broken
when using AJAX, content changes go unnoticed by
users, keyboard access and focus can be lost, and
search engine indexing can be diminished, making
content even more difficult to discover in the first
place.[15][16]

Preceding the call for a standardized approach to Web
2.0 development, Ben Schneiderman in 2000 expands
on the concept of universal access from the
Communications Act of 1934 (covering telephone,
telegraph, and radio services) to discuss the idea of
universal usability, or making the web available and
accessible for 90% of households. The difficulties
inherent with this approach, however, include
technology variety, user diversity, and gaps in user
knowledge.[21] These issues are still core problems
encountered with AJAX and accessibility. Different
technologies have different capabilities for using
JavaScript and showing graphical user interfaces.
Users approach these interfaces from various
perspectives and with a range of expectations based on
their previous experiences online.

A recent survey of IBM developers, whose company
touts their own accessibility department, internal
guidelines for accessible web development, and

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

828

assistive technologies for testing, identified one of the
biggest difficulties in making online products accessible
when using AJAX as “finding workarounds to problems
with toolkits, cross-browser support, and third party
components.”[23] Gibson writes in 2007 about the
need for AJAX toolkits to include accessibility, such as
landmarks, roles, and states prescribed by WAI-ARIA,
by default. “The first step is to enable toolkits with
accessibility, then applications built using these toolkits
will inherit accessibility.”[6] Insisting on a positive
outlook to the problem, however, Gibson uses the
perspective of history to state that similar to when the
web was first created, Web 2.0 has not been accessible
from its start and requires specific tools (like a mouse)
and different implementations for different browsers.
But as development continues, standards will win out
and accessibility will improve.

Until the day arrives when standard AJAX development
incorporates accessibility, suggestions abound for best
development methods and tools to aid in creating
accessible AJAX web applications. More than one
suggestion revolves around marking up content in a
semantic manner as a base from which to
develop.[3][6][8][22] A development technique
promoted early on in the AJAX timeline by Jeremy Keith
is call Hijax.[12] The concept prescribes developing the
web application without using any JavaScript
(incorporating pages that fully refresh) and marking up
the content as semantically as possible, then
intercepting (hijacking) calls to the server that would
fully refresh the page and using AJAX to enhance the
behavior of the user interface. This method is also
known as progressive enhancement. Using user
interface toolkits from AJAX libraries makes this
method ineffectual, however, since beginning

development without JavaScript requires creating an
entire user interface that then goes away when the
AJAX user interface component is applied, extending
development time and complicating user interaction
design.

Tools developed for use with Rich Internet Applications
have also been suggested as ways to improve
accessibility. Google-AxsJAX uses WAI-ARIA to “inject”
accessibility based on the document object model
(DOM) structure.[20] WIMWAT is a more recently
developed tool that proposes evaluating a web
application to see if it contains any RIA widgets (such
as a carousel slideshow widget). This data can then be
used by developers to evaluate the accessibility of
those widgets or by screen reading software to enhance
the information provided about content and content
changes to screen reader users.[2]

Expectations for interactions in web applications have
increased since the introduction of AJAX development
techniques. Toolkit components from AJAX libraries
that provide functionality in ready-made interfaces only
requiring content have furthered the speed at which
enhanced interaction has become commonplace. In the
long run, however, the underlying structure and
interaction methodology assumed by these
developments (mouse interaction and full-scale visuals
of the entire interface) will not withstand real life and
the needs of real users. A look at two studies of mobile
phone users and screen reader users from 2006 and
2009 respectively, shows that traditional interactions
with web content do not work with Web 2.0
applications.[18][7] User interaction designers need to
reconsider what users need from more interactive web
applications and those needs have to include a more

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

829

varied audience (visual variety, hearing variety, and
age-related variety) among users and devices. Design
on the web no longer revolves around the desktop
browser and the user with a keyboard and a mouse.
The following case study highlights this miscalculation
and discusses approaches to recover from these
development missteps.

METS Navigator History
METS Navigator was created in 2004 by the Digital
Library Program (DLP) at Indiana University as a
solution for delivering scanned images of pages and
other multi-part digitized objects in a web interface,
allowing end-users to view all digitized images of an
item as a complete object. Page-turning web
applications were not well developed at that time and
the needs of the Digital Library Program included use of
the XML metadata standard, Metadata Encoding and
Transmission Standard (METS), to allow navigating the
structure of the digitized object.[11]

Early versions of METS Navigator were written in Java
Struts and incorporated XML data to construct the
navigation. The needs of users, however, were not
being fully met by this implementation. Basic browsing
was possible per digital object (e.g., paging through a
book), but each time a page was “turned,” the browser
was completely reloaded, disrupting the feel of a page
turning action. Additionally, browsing across groups of
objects and searching within an object was not
possible. Discovering this digital content was also not
always straightforward. Some items served via METS
Navigator are not part of any formal collection and can
only be accessed through Indiana University’s online
library catalog (IUCAT). Providing a way for these
individual items to be broadcast by interested parties

without requiring the use of Digital Library Program
development and hosting time would increase
discoverability and create a way for the Digital Library
Program to serve content that anyone can use.

METS Navigator: The AJAX Version
The early Java Struts/XML web application version of
METS Navigator was released as open source software
in 2006, but the time necessary to create
documentation and release updates to the open source
version was scarce. Particularly since the Digital
Library Program faced time and resource limitations, it
seemed more likely that other web sites would want to
easily serve Digital Library Program content than that
an entirely separate institution or group of developers
would wish to install, use, and develop on top of the
Java codebase for METS Navigator. Based on the need
to increase the availability of the Digital Library
Program’s digitized objects by letting others use METS
Navigator and in search of a way to better fulfill user
needs for a more authentic page turner experience with
searching capabilities, a new design model envisioning
METS Navigator as a hosted web service came into
being.

Thus, the most recent version of METS Navigator was
developed using AJAX to support cross-collection
browsing (e.g., issues of a journal), document-centric
browsing (e.g., structured table of contents), and the
ability to “turn pages” without a complete refresh of the
browser window. In addition, digitized items with
available optical character recognition (OCR)
conversions – full text generated from the digitized
image - are searchable across the entire collection in a
single AJAX interface. These options are configurable

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

830

Figure 1. METS Navigator – AJAX version on desktop browser, showing digitized issues of Outdoor Indiana Magazine from 1934-1993
with browsing and searching capabilities in addition to page-turner features.

and the interface flexible enough to show or hide these
features, depending on the collection. This version is
also compatible with any third party web site or web
application. With a few calls to hosted JavaScript and
Cascading Style Sheet (CSS) files along with a
JavaScript function to set up the previously mentioned
configurations, any site internal or external to the
Digital Library Program can serve the DLP’s digitized
content, providing wider access and distribution
capabilities for these special collections previously
unavailable for even in-person viewing.

For this version of METS Navigator, AJAX libraries
provided a way to easily create user interface
components and allowed development time to focus on
the delivery of content and the search capabilities of
METS Navigator. At the time of development there
were a variety of AJAX libraries available, but the
available user interface components varied between the
different libraries. Ext JS, now part of a platform called
Sencha[4], provided all of the user interface
components necessary to build the page-turner
interface: tabs, panes, general paging controls, a

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

831

search interface that allowed paging through search
results, a tree menu, and customization capabilities.

The Digital Library Program hosts the Java Struts code
that interprets the metadata for items and collections
and the user interface is offered via a set of JavaScript
files. Configuration to control the size, layout, and
features of the page-turner viewer (for example, if
searching capabilities are included or not) is handled by
JavaScript functions. A persistent URL passed as a
parameter on the URL for the web page gathers the
XML data necessary to show the navigational structure
and page images. The use case that best exemplifies
the Digital Library Program’s goal for this version is to
enable Indiana University’s online library catalog
(IUCAT) to serve digitized content directly within the
online catalog record, removing the need for the end-
user to leave IUCAT to retrieve these electronic
resources. Now, by incorporating a set of JavaScript
files and functions and a persistent URL as a parameter
on a web site’s URL, METS Navigator has the capability
to be used anywhere on the web to deliver digitized
content from the Digital Library Program.

Some usability issues related to using AJAX in web
applications were recognized and included in the
project requirements for this version. Bookmarking
and the browser Back button were noted AJAX-related
issues that needed to be resolved if this version were to
move forward successfully. Developers did the
research and work involved to correct these issues and
worked out the following solutions. For bookmarking,
the developers added a page parameter to the URL for
the web page via JavaScript each time a page image
was loaded so any page within any item could be
retrieved from a bookmarked URL. The browser’s Back

button was re-enabled through the use of Ext JS’s
History functions, making it possible to write each
loaded page of an item to the browser’s history.

Lack of discoverability via search engines is another
issue common to AJAX web applications, as content
loaded within a page that never reloads tends to never
be found by search engines indexing the static pages of
a web site. Within the Digital Library Program team
working on METS Navigator, there is both a desire to
make METS Navigator content more discoverable via
search engines as well as a question about the
necessity of such a feature. Some content viewed via
METS Navigator exists more or less on its own with no
other online information or context. These are items
that have been digitized in the past but are not
connected to any broader collection or set of items that
can provide context. These items would currently
benefit from discoverability via search engines. Many
items currently viewed using METS Navigator, however,
are already part of other web sites being indexed by
search engines. These sites contain additional context
so METS Navigator items are better served through
discovery via those collections rather than as
standalone items online. In addition, development is
moving towards an embeddable version of METS
Navigator, meaning the page-turner and the items it
shows will always be viewable within the context of a
web site (internal or external to the Digital Library
Program), raising further questions about what is really
worthwhile to expose for search engine indexing at this
stage of development.

The AJAX-related usability issues previously described
were considered early on, managed with some amount
of developer effort, and included enhancements beyond

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

832

the use of Ext JS. Other usability issues requiring
additional work, however, were unforeseen and even
reached beyond the project’s scope.

User Interface Issues
Problem: Customizing and Validating HTML/CSS
Customizing the HTML markup and Cascading Style
Sheets (CSS) was the first unforeseen user interface
problem encountered. In trying to customize the look
and feel of the different user interface components,
concerns arose that different customizations were not
displaying the same across different browsers.
Additionally, customizing the dynamic HTML output was
a difficult task since this output was generally only
available to the designer within compiled JavaScript
files, files that are not meant for editing. These
explorations lead to trying to view the HTML source
produced by the AJAX libraries. Viewing the dynamic
HTML was possible using a tool such as the Firebug
plug-in for Firefox[5], but validating that HTML source
from Firebug was not possible and copying and pasting
to validate was as time-consuming and undesirable as
editing the compiled JavaScript files. The dynamic
HTML produced by the AJAX libraries was often
cumbersome and definitely not semantic (i.e., HTML
tables used for layout or several layers of HTML div’s,
nested within each other). Especially after combining
several user interface components such as the panes
and a tree menu, the dynamic HTML produced did not
validate.

These problems should not be considered as anything
negative towards Ext JS – the focus of most AJAX
libraries is to provide functionality in stable JavaScript
that performs the same across browsers and platforms.
The HTML dynamically produced by these components

is a side product, not meant for editing or even
viewing. The error in this approach is that the product
created does not meet standards or provide a flexible
enough user experience to match audience needs. Just
as the surveyed IBM developers noted, the Digital
Library Program found that dealing with problems in
AJAX libraries is particularly challenging.

Solution: Customize as Much as Possible
Relying on AJAX libraries to create the HTML means
just that – using the libraries. Customizing the look
and feel of the user interface from these libraries is
possible to a point. Larger button images and tool tip
text were put in place on the Page Turner Toolbar using
custom JavaScript functions from that Ext JS library
and background images styled within CSS. These
changes made the controls for turning the pages of an
item easier to use and understand.

The project scope of METS Navigator, however, has not
allowed time for contributing changes to Ext JS’s AJAX
libraries to improve the dynamic HTML. Becoming part
of Ext JS open-source development appears to be the
only real way to change the HTML output from its
libraries. Future development might require this kind
of work, but for now, METS Navigator currently
produces invalid HTML, impacting efforts to improve
accessibility.

Problem: METS Navigator Inaccessible
Fairly soon after discovering that viewing and validating
the dynamic HTML was a problem, the accessibility of
METS Navigator as an AJAX web application came into
question. If the dynamic HTML was not written to
standards, the likelihood that assistive technologies like
screen readers could interpret METS Navigator content

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

833

was low. The Adaptive Technology & Accessibility
Centers at Indiana University[9] tested METS Navigator
using screen reading software and confirmed that,
indeed, the content and page-turning controls were not
accessible and the tree menu and search interface only
provided limited access. Using user interface
components from an AJAX library as a means of
building an entire interface was limiting access for
users of screen reading software and keyboard-only
users (users who do not use a mouse).

Accessibility of AJAX user interface components has not
been a development priority among the community.
Certain libraries, such as YUI and GWT, allow for adding
accessibility by way of WAI-ARIA landmarks, roles, and
states, which can be used by screen readers and other
assistive technologies to signal changes in information
on a page using JavaScript[24], but by default AJAX
libraries do not produce components with this kind of
usability in mind. Testing for accessibility is easy
enough in terms of keyboard access (using a web page,
widget, or web application without a mouse is enough
to test keyboard access). Screen reader testing
requires special equipment and skills to know how to
use the software. There are some tools available, such
as the Fangs plug-in for Firefox[13], which provide a
limited simulation of how a screen reader would
interpret and read a web page. These tests can be
quite revealing to developers and designers both and
can be helpful when determining whether or not an
AJAX user interface component is worth implementing.

Solution: Customization for Keyboard Access
Fortunately, through customization capabilities within
the Ext JS libraries along with other JavaScript and CSS
techniques, METS Navigator developers and designers

improved keyboard access. A KeyMap function from
Ext JS allowed keys to be assigned for access to the
“Browse Collection” and “Table of Contents” tabs inside
the Navigation pane on the left side of the application
(certain collections show both tabs while others only
use the “Browse Collection” tab). Further JavaScript
commands assigned the use of the ENTER key to
submit a search and the TAB key to move focus to
search results in the Search pane on the right side of
the application. CSS changes created a border around
links and buttons of focus within METS Navigator as
well, helping keyboard users visually track browser
focus within the page-turner. The effort to implement
keyboard accessibility was not insignificant, requiring
research into keyboard controls available in Ext JS,
creating a plan for overall keyboard access, and testing
the implementation in various browsers and platforms
to ensure comparable behavior. The end result,
however, was an overall improvement in functionality
for most users, since clicking the mouse was no longer
required to conduct a search and browser focus was
always visible.

The keyboard interactions generally involve the TAB
key, ARROW keys, and ENTER key (keys commonly
used across browsers for navigating and working with
content) so they lend themselves to discoverability but
there are differences in keyboard interaction among the
sections of the page-turner. Due to the different
keyboard interactions required to move through the
tree menu versus the search results and some custom
keyboard assignments, the Help page for METS
Navigator now includes a section on keyboard
accessibility.[17] These changes do nothing to help
screen reader access but they are an accessibility
improvement, nonetheless.

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

834

Problem: Interface Unusable on Mobile Devices
METS Navigator with an AJAX interface is not usable on
mobile devices, particularly mobile phones with small
screens. The controls become too small for touch
interfaces and the interface resizes to fit the size of the
screen, meaning METS Navigator is often times a top
bar of controls and not much else.

Figure 2. METS Navigator interface as displayed in landscape
mode (horizontally, for largest view) on iPhone.

METS Navigator on an iPad or tablet-style device is a
better experience than a touch-screen phone, but the
interface is still limited by the width of the screen and
page images are not fully viewable with the Navigation
and Search columns showing (See Figure 3). The
columns and controls are easier to see on the larger
screen of a tablet and those columns are collapsible by
the user so the experience is not as limiting, but the
interface was not constructed with such a small screen

in mind. This oversight needs to be addressed when
moving forward with future METS Navigator
development.

Solution: Pending
There are options for addressing the current interface
problems on mobile devices: use media queries to
arrange a CSS that changes the banner and footer
areas of the page so more of METS Navigator can show
on small screen devices; try modifying the CSS used by
the AJAX libraries in small screen devices to increase
the size of controls or define a different height and
layout for the entire interface; or develop a completely
separate METS Navigator interface for use with small
screen devices.[1]

Considering the options described, using media queries
to modify the CSS rendered based on screen size
seems like the best solution. The styles for the
information surrounding the page-turner (header,
footer, and bibliographic content about the collection)
are easily manipulated. CSS can be used to control the
look and feel of the AJAX components to a point but not
every function or component can be styled by a CSS
class or identifier, so limits may be encountered when
reworking the AJAX user interface for mobile devices.
Creating two separate METS Navigator applications is
not a sustainable development plan, however, so
working with the CSS to change the display of METS
Navigator based on the screen size of the device being
used seems like an option that could work.

Currently, METS Navigator uses an Ext JS function
called Viewport that assigns components to regions

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

835

Figure 3. METS Navigator as displayed in landscape mode on iPad.

(north, south, east, west, or center) and specifies the
widths of those components. In the rendered HTML,
this translates to inline styles of absolute positioning
(i.e., style=”left:0px; right:0px;”) and width (i.e.,
style=”width:300px;”). If an external CSS file called by

a media query can override these inline styles (using
the “!important” statement, for instance) then
positioning can be changed on a smaller screen size to
a vertical rather than horizontal layout and width can
be adjusted to 100%. These changes might work for

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

836

mobile devices, particularly mobile phones. Tablet-
sized interfaces might only require a change to the
width of the side columns, which can also be
accomplished via external CSS styles. Unfortunately,
using the “!important” statement in CSS styles can
introduce problems, since it disrupts the cascading
rules of CSS and can complicate maintenance and
development work.[14] But this option is viable at this
time using the current Ext JS libraries and more
maintainable than creating a separate METS Navigator
application for mobile devices.

These explorations to improve METS Navigator on
mobile devices have yet to occur. Creating mobile
device styles that will work when METS Navigator is
embedded in a third party web site will present even
more challenges. As development continues, however,
mobile access will need to be addressed along with
accessibility and standards-compliant HTML.

Future Development
The next version of METS Navigator will attempt to
implement the embedded page-turner – it will be used
in a separate Digital Library Program application (IU’s
Finding Aids site[10]) to show digitized items available
within full-text finding aids of various archives and
special collections at Indiana University. See [19] for an
example of a finding aid (a guide to a physical archival
collection) that currently contains digitized items for
viewing through an earlier version of METS Navigator.
The embedded version will test the portability and
hosting model that was one of the reasons for moving
to a user interface constructed via AJAX.

Development has progressed enough using the Ext JS
libraries that re-writing METS Navigator using a

different AJAX library would involve too much time for
this next release. Ext JS is working on components
that are accessible or incorporate WAI-ARIA (see Key
Feed Viewer and ARIA Tree examples under
“Accessibility Samples” in [4]) but they are labeled as
“Experimental” and are not the standard way of writing
user interface components in this AJAX library. It also
remains unclear whether or not any of the user
interface components have been improved to produce
valid dynamic HTML that could be semantically
interpreted by screen readers.

In addition, due to the fact that the content currently
shown in METS Navigator is only digitized images (.tiff,
.jpg, or .gif files), true accessibility has never been
possible. By nature, image content has limited
accessibility for screen reader users and other assistive
technologies. In the future, however, METS Navigator
will be the content delivery mechanism not only for
digitized images but also full text, video, and audio
content, much of which can be interpreted by any user
with the right technology. The Digital Library Program
will have a responsibility to ensure that this content can
be used by everyone, including screen reader users and
mobile device users, in order for METS Navigator to
remain a viable and usable mode of content delivery.

Conclusion
Using AJAX libraries to create a portable interactive
user interface has to be weighed against the current
costs of limited accessibility and a diminished overall
quality in the final product. METS Navigator uses AJAX
libraries to create its user interface, enabling page
turning, internal navigation, and searching without a
web page reload and the ability to embed Digital
Library Program content in any web site. However,

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

837

METS Navigator also suffers from a lack of screen
reader accessibility and poor usability on mobile
devices.

Standardized methods for developing AJAX web
applications that include accessibility are on the horizon
for AJAX toolkits, but these practices are not yet
commonplace. Customizations to the AJAX libraries
used in METS Navigator aid accessibility for keyboard-
only users but problems persist for screen reader users.
Additionally, plans to provide full text via METS
Navigator will be hampered if the application cannot be
made accessible to all users. Currently, only page
images are served via METS Navigator, limiting the
usefulness of the content for screen reader users, but
using this application to serve full text content will
require that it work for everyone, including those using
assistive technologies and mobile devices. CSS
changes might improve the experience of using METS
Navigator on mobile devices, but since the AJAX
libraries in use currently render some styles inline,
changes will have to be forced outside of CSS rules and
could complicate future development work.

Improving the rendered HTML by contributing changes
to Ext JS’s JavaScript libraries might be the next step
to make METS Navigator accessible for users of screen
readers and mobile devices. This option will need to be
compared to the time and cost of re-writing METS
Navigator using a different AJAX library to determine
the best route to complete accessibility. This work is
not occurring for METS Navigator’s next release, but
will need to happen before METS Navigator begins
delivering full text content and other media.
Accessible usability is a model by which all web content
should be developed but project goals and technology
limits can impede these larger objectives. For now, the
hope is that the current state of METS Navigator is as
universally accessible as possible.

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

838

Acknowledgements
I would like to thank Michelle Dalmau, David Jiao, Jenn
Riley, and Cliff Ingham for their helpful feedback in
preparation of this case study. I would also like to
thank the Adaptive Technology & Accessibility Centers
at Indiana University for their evaluations of METS
Navigator using assistive technologies.

Citations
[1] Andrew, R. How to use CSS3 media queries to
create a mobile version of your website. Smashing
Magazine.
http://www.smashingmagazine.com/2010/07/19/how-
to-use-css3-media-queries-to-create-a-mobile-version-
of-your-website.

[2] Chen, A. Widget identification and modification for
Web 2.0 access technologies (WIMWAT). SIGACCESS
Accessibility and Computing, 96, ACM Press (2010), 11-
18.

[3] Cooper, M. Accessibility of emerging rich web
technologies: Web 2.0 and the Semantic web. Proc.
W4A 2007, ACM Press (2007), 93-98.

[4] Ext JS. http://www.sencha.com/products/js/.

[5] Firebug. http://getfirebug.com/.

[6] Gibson, B. Enabling an accessible Web 2.0. Proc.
W4A 2007, ACM Press (2007), 1-6.

[7] Hailpern, J., Reid, L.G., Boardman, R., and Annam,
S. WEB 2.0: Blind to an accessible world. Proc. WWW
2009, ACM Press (2009), 821-830.

[8] Horton, S. Designing beneath the surface of the
web. Proc. W4A 2006, ACM Press (2006), 1-5.

[9] Indiana University Adaptive Technology &
Accessibility Centers.
http://www.indiana.edu/~iuadapts/.

[10] Indiana University Digital Library Program. Finding
Aids.
http://www.dlib.indiana.edu/collections/findingaids.

[11] Indiana University Digital Library Program. METS
Navigator. http://metsnavigator.sourceforge.net/.

[12] Keith, J. Hijax: Progressive enhancement with
Ajax. XTech 2006, (2006).
http://domscripting.com/presentations/xtech2006/.

[13] Krantz, P. Fangs – the screen reader emulator.
http://www.standards-
schmandards.com/projects/fangs/.

[14] Lazaris, Louis. !important CSS Declarations: How
and When to Use Them. Smashing Magazine.
http://www.smashingmagazine.com/2010/11/02/the-
important-css-declaration-how-and-when-to-use-it/.

[15] Lembree, D. Ajax and web accessibility. Accessing
Higher Ground: Accessible Media, Web, and Technology
Conference, (2008).
https://docs.google.com/present/view?id=dc39pw4c_6
7hcjvc3dt.

[16] Lembree, D. Making JavaScript Accessible. BayJax
– the Bay Area Ajax and JavaScript Meetup, (2010).
http://www.slideshare.net/webaxe/making-javascript-
accessible.

[17] METS Navigator Help.
http://webapp1.dlib.indiana.edu/metsnav3/help.html.

[18] Plos, O. and Buisine, S. Universal design for
mobile phones: a case study. Ext. Abstracts CHI 2006.
ACM Press (2006), 1229-1234.

[19] President Herman B Wells’ speeches, 1937-1962.
http://purl.dlib.indiana.edu/iudl/findingaids/archives/In
U-Ar-VAA2642.

[20] Raman, T.V. Cloud computing and equal access for
all. Proc. W4A 2008, ACM Press (2008), 1-4.

[21] Schneiderman, B. Universal Usability.
Communications of the ACM 45, 5 (2000), 84-91.

[22] Shelly, C. and Young, G. Accessibility for simple to
moderate-complexity DHTML web sites. Proc. W4A
2007, ACM Press (2007), 65-73.

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

839

[23] Trewin, S., Cragun, B., Swart, C., Brezin, J., and
Richards, J. Accessibility challenges and tool features:
An IBM web developer perspective. Proc. W4A 2010,
ACM Press (2010).

[24] W3C Web Accessibility Initiative. WAI-ARIA
Overview. http://www.w3.org/WAI/intro/aria.

CHI 2011 • Session: Reading & Writing May 7–12, 2011 • Vancouver, BC, Canada

840

