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Abstract

Much life science and biology research requires an understanding of complex relationships between biological entities
(genes, compounds, pathways, diseases, and so on). There is a wealth of data on such relationships in publicly available
datasets and publications, but these sources are overlapped and distributed so that finding pertinent relational data is
increasingly difficult. Whilst most public datasets have associated tools for searching, there is a lack of searching methods
that can cross data sources and that in particular search not only based on the biological entities themselves but also on the
relationships between them. In this paper, we demonstrate how graph-theoretic algorithms for mining relational paths can
be used together with a previous integrative data resource we developed called Chem2Bio2RDF to extract new biological
insights about the relationships between such entities. In particular, we use these methods to investigate the genetic basis
of side-effects of thiazolinedione drugs, and in particular make a hypothesis for the recently discovered cardiac side-effects
of Rosiglitazone (Avandia) and a prediction for Pioglitazone which is backed up by recent clinical studies.
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Introduction

The emerging fields of chemogenomics [1] and systems chemical

biology [2] require examination of critical associations between

individual entities (genes, compounds, etc). Identification of

semantic associations can utilize many of the methods of graph

theory, such as finding shortest paths between entities, and along

with Semantic Web methods forms the basis of our work here.

However, the complex structure of the ontologies involved, the

heterogeneity of the data sources, and sheer size of some of the

datasets make this a non-trivial problem: one requires a highly

efficient and scalable framework to identify semantic associations

in the biomedical field. Additionally, there are usually many linked

paths between two instances; thus providing contextual evaluation

of those different linked paths is also a critical problem.

The Semantic Web provides machine-understandable seman-

tics for resources, establishing a common platform to integrate

heterogeneous data sources, and tools for searching and data

mining these sources in an integrative fashion. Semantic Web

methods have been adopted in various areas of life sciences,

healthcare, and drug discovery [3–4], through various projects

including Chem2Bio2RDF (developed in our labs) [5], Bio2RDF

[6], Linking Open Drug Data (LODD) project [7], and Linked

Life Data, which convert data to a common syntax and specify the

meaning of the data through formal, logic-based ontologies or

schemas. In particular, discovering and ranking complex links and

relationships between resources are critical steps toward knowl-

edge discovery. In the biomedical domain, there is a vital need for

cross-domain data mining. Recent technological and experimental

advances in genomics, compound screening in particular have

resulted in an explosion of public data of chemical compounds,

drugs, genomes, biological molecules, and in scholarly publications

that pertain to these entities. Consequently, new informatics-based

integrative domains have emerged, including cheminformatics [8],

chemogenomics [1] and systems chemical biology [2]. Cheminfor-

matics pertains to the large-scale analysis of chemical structures

and their relationships to biological entities; chemogenomics to the

relationships between chemical compounds and genes or protein

targets, and systems chemical biology to the system-wide

application of these techniques (where the system is a cell or

organism as a whole).

In this paper, we first describe an algorithm for tackling this: a

scalable path finding algorithm that works on RDF (the basis on

describing relationships in the Semantic Web) and an algorithm

based on LDA [9] which we call Bio-LDA, that extracts topics

from large quantities of biomedical literature and gives the

probabilistic distribution of biological terms (e.g., compounds,

diseases, and genes) among different topics, so as to provide

contextual information for those identified semantic associations.

Through the integration of the path finding algorithm and a Bio-

LDA algorithm we have developed for ranking paths using

literature associations [10] with our prior work to develop an

integrated RDF systems chemical biology resource [5], we

demonstrate how important semantic and literature-contextual-

ized paths can be identified and evaluated. We discuss this process

using two biomedical case studies.

In the context of Semantic Web as a whole, the problem of

discovering and reasoning complex relationships between resourc-

es has been studied by many researchers, most of which studied a

specific subset of such relationships, or relationships that bear
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certain properties. Anyanwu et al. [11–13] originally formalized

an important subset of complex relationships called Semantic

Associations that are mainly based on undirected or directed

paths. Anyanwu et al. [11,13] define three types of complex

relationships based on Property Sequence (PS) that is a finite

sequence of properties defined in RDFS: r – Path association

capturing the connectivity feature between two resource; r – Join

association indicating that resources r1 and r2 relate to the same

resource; r – ISO association identifying the similarity between r1
and r2. A following-up work [13] formalized the definition of

semantic associations and presented outlines of two implementa-

tions of r – operator. The first approach is to build a separate r –

query processing layer from a storage system. The r – query

processing layer maintains an index called PathGuide that keeps

the path information among classes extracted from schema.

However, this is not very scalable when a large index size and

number of queries for validation is needed. The second approach

is to use graph algorithms on memory-resident RDF graphs.

However, the RDF graphs are usually too large to fit into memory.

Sheth et al. [14] combined novel academic research and

commercialized semantic web technology to provide capabilities

of semantic association identification. Faloutsos et al. proposed an

algorithm to identify an informative subgraph between two nodes

[15]. Mulla et al. proposed three heuristics to calculate weights of

edges and assigned weights to edges of the RDF graph [16] and

applied the algorithm proposed in [15]. Perry et al. introduced a

system for computing Semantic Associations over distributed RDF

data stores in a peer-to-peer setting [17]. For semantic association

finding in the biomedical domain, Dong et al. described a

prototype system for mining the semantic associations in ontology

structure and search for instances that belong to the nodes and

edges along the identified path through SPARQL [18].

Another approach to the discovery of semantic association is to

use a query language that supports semantic association queries.

Kochut and Janik [19] present SPARQLeR, a novel extension of

the SPARQL query language which adds the support for semantic

path queries. The proposed extension fits seamlessly within the

overall syntax and semantics of SPARQL and allows easy and

natural formulation of queries involving a wide variety of regular

path patterns in RDF graphs. SPARQLeR’s path patterns can

capture many low-level details of the queried associations. Other

similar studies include SPARQ2L, PSPARQL (path RDF query

language) [20].

In the field of topic identification and text mining, since Blei

et al. [9] introduced the LDA model, various extended LDA

models have been used in automatic topic extraction from text

corpora. LDA and its extended models have been broadly used in

many areas including the biomedical domain. Zheng et al. [21]

applied the classic LDA model to protein-related MEDLINE titles

and abstracts and extracted 300 major topics. They further

mapped those topics to Gene Ontology (GO) terms. Blei et al. [22]

examined 5,225 free-text items in the Caenorhabditis Genetic

Center (CGC) Bibliography using the classic LDA model. They

found that the LDA model had better predictive performance than

two standard models (unigram and mixture of unigrams) trained

using the same data. Bundschus et al. [23] presented a Topic-

Concept model, which extends the basic LDA framework to reflect

the generative process of indexing a PubMed abstract with

terminological concepts from an ontology.

In this paper, we propose a scalable path finding algorithm that

can not only detect paths between instances belonging to different

classes but also between instances belonging to the same class. In

addition, we complement the algorithm with a Bio-LDA model

which extracts contextual information on topics of bio-terms,

which helps to evaluate and interpret the semantic associations.

This paper is organized as follows: Section 2 describes the

materials and methods; Section 3 presents the results, including

two case studies; section 4 presents a discussion of the results.

Materials and Methods

2.1 Datasets
The work reported in this paper uses the Chem2Bio2RDF

resource [5]. Chem2Bio2RDF covers 25 biomedical datasets,

grouped into 6 domains, namely chemical (PubChem Compound,

ChEBI, PDB Ligand), chemogenomics (KEGG Ligand, CTD

Chemical, BindingDB, MATADOR, PubChem BioAssay, QSAR,

TTD, DrugBank, ChEMBL, Binding MOAD, PDSP,

PharmGKB), biological (UNIPROT, HGNC, PDB, GI), systems

(KEGG Pathway, Reactome, PPI, DIP), phenotype (OMIM,

Diseasome, SIDER, CTD diseases) and literature (MEDLINE/

PubMed). At the time of writing, the numbers of triples (i.e.

relationships encoded) is about 78 million. Provenance informa-

tion has been added and the data has been linked to LODD and

Bio2RDF [6] using owl:sameAs constructs.

Additionally, biological terms that are found in these datasets

(compounds, drugs, genes, diseases and side-effects; collectively we

call these BioTerms) are identified in scholarly journal abstracts in

PubMed, and these terms are used to link Publications (as

identified by a PubMed ID) with entries in Chem2Bio2RDF

datasets. The BioTerm PubMed-dataset relationships are convert-

ed to RDF triples and integrated with Chem2Bio2RDF. Table 1

gives some statistics on the extracted BioTerms. The data schema

used in our system is designed based on the category of bio-terms

(compound, drug, gene, disease, side effect, pathway) and DTD

(Document Type Definition) provided by National Library of

Medicine (NLM). Bio-term dictionaries are generated from the

following data sources listed in Chem2Bio2RDF: the compound

dictionary is generated from PubChem Synonym with the

PubChem Compound identifier (CID); the drug dictionary is

generated from DrugBank and used DBID as the identifier; the

gene dictionary is generated from the HGNC and used UniprotID

as the identifier; the disease dictionary is generated from the CTD

(the comparative toxicogenomics database) and used MeshID as

the identifier; the side effect dictionary is generated from the Sider

and used UMLSID as the identifier; the pathway dictionary is

generated from the KEGG pathway and used KeggID as the

identifier. We parsed the XML file and extracted the terms based

on the pre-generated dictionaries.

2.2 Algorithm for Pathfinding in RDF data
We have developed a scalable and efficient path finding

algorithm that is designed to find all of the paths between any

two entities in the RDF network. In the area of network analysis,

the task of association search can be formalized as a task of path

search in the graph. Algorithms for shortest path [24–25], efficient

shortest paths in sparse networks [26], top-k shortest paths [27–

28], and near-shortest paths [29] have been proposed. See [30–32]

for overviews. See also [33]. The algorithms for shortest path have

been applied to, for instance, find the best routines of vehicles or

messages, find optimal flows in networks (treated for example in

[34]) and traffic-light networks [35], and find the k most likely state

sequences from the HMM graph given the observed acoustic data

[36].

We are given a semantic network (e.g., Chem2Bio2RDF), which

can be represented as a graph G = (V, E), where vMV represents an

entity in the network; er
ijME represents a relationship with property

r (e.g., drug interaction) between entities vi and vj; the relationship

Mining Relational Paths in Biomedical Data
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can be directional or bi-directional; the goal of association is to

find relationship sequences from vi to vj. The association here is

defined as: Given a network G = (V, E), the association a(vi, vj) is a sequence

of relationships {er
i1, er

12, …, er
lj} satisfying er

m(m+1)ME for m = 1, 2, …,

l21, where vi and vj are the source entity and the target entity, respectively.

We assume that no entity will appear on a given association

more than one time. We define the process of association search

from one entity to the other as: Given an association query (vi, vj), where

vi denotes the source entity and vj denotes the target entity. Association search is

to find possible associations {ak(vi, vj)} from vi to vj.

In this paper, we formalize the association search problem as

that of near-shortest associations. We use a two-stage approach for

finding the near-shortest associations. The input is an association

query (vi, vj). The objective is to find list of associations A(vi,

vj) = {ak(vi, vj)}.

By combining the initialization step and the output step, our

approach consists of four steps:

1. Initialization. We formalize the network as a directed graph.

We view each entity as a node and each relationship as an edge

in the directed graph. We create an index for the directed

graph and load the index into memory for the following steps.

2. Shortest association finding. It aims at finding the shortest

associations from all entities vMV\vj in the network to the target

entity vj (including the shortest association from vi to vj with

length Lmin). In a graph, the shortest path between two nodes can

be found using the state-of-the-art algorithms, for example,

Dijkstra algorithm. However, we are dealing with a large-scale

network, where the conventional Dijkstra algorithm results in a

high time complexity of O(n2). We propose using a heap-based

Dijkstra algorithm to quickly find the shortest associations that

can achieve a complexity of O(nlogn).

3. Near-shortest associations finding. Based on the length of

shortest association Lmin found in Step 2 and a pre-defined

parameter b, the algorithm requires enumeration of all

associations that are less than (1+b)Lmin by a depth-first search.

We constrain the length of an association to be less than a pre-

defined threshold. This length restriction can reduce the

computational cost.

The correctness of the approach follows from the obvious

dynamic programming interpretation of Step 2 and Step 3.

Figure 1 summarizes the proposed algorithm. In the rest of the

section, we will explain the two main stages (Step 2 and Step 3).

2.2.1 Algorithm for Shortest Association Finding
In the second step of the approach, we try to find the shortest

associations from all entities (vMV\vj) to the target entity vj. The step

is necessary a_s all of the found shortest associations d9(vi) will be

used to guide the search process in Step 3. Dijkstra is the

traditional approach for the shortest path search in a graph;

however, the conventional Dijkstra algorithm has a complexity of

O(n2), making it inefficient for a large graph. We use a heap-based

Dijkstra algorithm (heap-Dijkstra) which has a complexity of

O(nlog(n)). The heap-Dijkstra is summarized in Figure 2.

In the heap-Dijkstra algorithm, we firstly create a minimal heap.

Then, in each iteration of the algorithm, we use the heap to find

the minimal value. The function is in heap() in line 14 is to

determine whether the node u has been inserted into the heap or

not. The operations ‘‘moveUp’’ and ‘‘insert’’ are respectively used

to resort the heap and to insert a node into the heap. This focuses

on finding the shortest path from each node to a specified target

node. This is different from the traditional use of the Dijkstra

algorithm where the objective is usually to find the shortest path

from a specified source node to each of the other nodes. We

conducted complexity analysis of the algorithm. As all nodes may

be inserted into heap, the complexity of the loop from line 5 is

O(n). In the loop, the algorithm requires enumerating all edges

E(vmin) pointing to the selected node vmin. Usually, we have

|E(vmin)|%|V|, where |E(vmin)| is the number of edges pointing to

the node vmin and |V| is the number of nodes in graph G. In our

research network, the average number of edges pointing to a node

is about 5. Hence, we view the complexity of the loop in line 9 as

O(1). The running time of the operation ‘‘moveUp’’ in line 15 is

log(n), necessitating the operation ‘‘insert’’ in line 17. Therefore,

the final complexity of the algorithm is O(nlog(n)).

More intuitively, search processes starts at the starting node and

ending note at the same time. The process systematically explores

all the neighboring nodes in sequence; then for each of those

nearest neighboring nodes, it visits their unexplored neighbor

nodes and records/updates all those stretching-out paths. The two

processes end when they first explored the same node in the graph.

Thus the shortest path is identified by combining the recorded

path between the staring node and the coincidental node and

between the coincidental node and the ending node. An example

showing how the algorithm runs on Chem2Bio2RDF data are

shown in Figure 3.

In the above example, we want to find the path between node 1

and node 26 (Figure 3-a):

1. Breadth First Search (BFS) explores the nearest neighbor of node

1 and it reaches node 3, 4, 6, 7, 10 (Figure 3-b);

2. Meanwhile, another BFS explores the nearest neighbor of node

26 similarly and it reaches node 19, 21, 23, 24, 25 (Figure 3-c);

3. Explore all the nearest neighbors of node 3, 4, 6, 7, 10, and it

reaches 2, 5, 8, 9, 11, 14, 18 (Figure 3-d);

4. Meanwhile, explore all the nearest neighbors of node 19, 21,

22, 23, 24, 25, and it reaches 15, 16, 18, 22 (Figure 3-e);

Table 1. Statistics of the bio-terms extraction.

Bio-Terms # of unique terms # of term-citation pairs # of unique citations

Compound 56,383 11,775,891 5,856,084

Drug 2,820 5,624,529 3,427,067

Gene 13,022 5,252,844 3,735,517

Disease 3,848 12,612,636 7,066,084

Side Effect 1,363 10,489,676 6,310,741

Pathway 180 916,754 838,090

doi:10.1371/journal.pone.0027506.t001
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5. One node (i.e., node 18) first gets visited by both BFS processes;

algorithm ends. The shortest path between node 1 and node 26

is 1–10–18–21–26 (marked in red in Figure 3-f).

2.2.2 Near-Shortest Association Finding
In the previous step, we obtain the shortest association from each

source entity to the target entity vj, including the shortest association

with the length Lmin from the source entity vi to the target entity vj. In

this step, based on the depth-first search, we try to find the near-

shortest associations. The algorithm runs a straightforward vi-vj

association enumeration algorithm (depth-first search). The depth-

first search itself has an exponential complexity. We apply several

strategies to reduce the computational cost. First we use an indicator

c(v) to avoid loop in the association. Next we utilize the shortest

associations d9(vi) found in Step 2 to prune the search space.

Specifically, we extend an vi-s association to u along the relationship

e = (s, u) if and only if d(s)+1+d9(u),(1+b)Lmin, where d(s) is the length

the current vi-s association and d9(u) is the shortest association from

the entity u to the target entity vj (cf. line 11 in Figure 1).

Whenever an association a(vi, vj) is found using the above

method, we calculate the length of the association d(a(vi, vj)) and

add the association with its length to the association set A. The

search terminates when no more association can be found. Then

we rank all a(vi, vj)MA with the lowest d(a(vi, vj)) on the top. Finally,

we return the ranked associations. It is not easy to accurately

analyze the complexity of the algorithm in this step. Depth-first

search itself has an exponential complexity. However, in our

algorithm we utilized several strategies to heuristically guide the

search. The number of search steps is greatly reduced. An

empirical analysis of the experimental results on the researcher

network (with half million nodes and 2 millions edges) shows that

the average search steps in this sub-process is 14,418 and the

average time cost in this step is 0.34s which takes only 16.49% of

the total time cost (about 3 seconds on average).

2.3 Bio-LDA
Natural language processing (NLP) has been widely used to mine literatures

in biomedical domain [37,38]. Compared to traditional NLP techniques,

which bases on linguistic rules of the documents, modern probabilistic models

Figure 1. Shortest path algorithm. The pseudo code for the shortest path finding algorithm.
doi:10.1371/journal.pone.0027506.g001
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focus on the topical features of the documents. For example, LDA, a

hierarchical Bayesian model, and its assorted variations, can [39,40] capture

groups of words that tend to be used to discuss the same topics. Applications of

LDA in the biomedical domain have already produced promising results

[22,41,42]. However, few of those applications take bio-terms (including

genes, compounds, diseases, etc.) into a customized LDA model as the hidden

variables. The Bio-LDA model used in this paper not only uncover the topical

feature of common words, but more importantly, also the bio-terms. The

similarity of bio-terms are then measured using KL-divergence, which,

compared to the co-occurrence-based methods, is more helpful for identifying

hidden associations [43,44].

The Bio-LDA model extracts latent topics of bio-terms from

biomedical literature, and which further provides semantically

contextual evaluation for those associations identified by the path

finding algorithm.

Our Bio-LDA model extends the ACT model proposed by [45]

as shown in Figure 4. Based on the results of Bio-LDA, we

calculate entropy and KL divergence for any given two RDF

nodes in the RDF graph to identity their semantic association.

The journal information is viewed as a stamp associated with

each word in a paper. Intuitively, the co-occurrence of bio-terms

in a document determines topics in this document and each topic

then generates the words. a,b,m which are the Dirichlet priors for

the distribution of bio-terms over topics, topic over words, and

journals over topics. B is the total set of bio-terms. T denotes the

total set of topics. D is the overall set of documents. Nd is the set of

words in a given document d.

The generative process can be summarized as follows:

1. For each topic z, draw wz and yz respectively from Dirichlet

priors bz and mz;

2. For each word wdi in paper d:

N draw a bio-term xdi from bd uniformly;

N draw a topic zdi from a multinomial distribution hxdi

N specific to bio-term xdi, where h is generated from a Dirichlet

prior a;

N draw a word wdi from multinomial wzdi
;

N draw a journal stamp jdi from multinomial yzdi
.

In our model, Gibbs sampling is chosen for inference. As for the

hyperparameters a, b, and m, we take a fixed value (i.e.,

a= 50 = T, b= 0.01, and m= 0.1). In the Gibbs sampling

procedure, we first estimate the posterior distribution on just x

and z and then use the results to infer h,w, and y. The posterior

probability is calculated by the following equation:

P(zdi,xdijz{di,x{di,w,j,a,b,m)!

m{di
xdizdi

zazdiX
z

(m{di
xdiz

zaz)

n{di
zdiwdi

zbwdiX
wv

(n{di
zdiwv

zbwv
)

n{d
zdi jd

zmjdX
j
(n{d

zdi j
zmj)

ð1Þ

where the superscript 2di denotes a quantity, excluding the

current instance (e.g., the di-th word token in the d-th paper). After

Gibbs sampling, the probability of a word given a topic w, the

probability of a journal given a topic y, and the probability of a

topic given a bio-term h can be estimated as follows:

wzwdi
~

n{di
zdiwdi

zbwdiX
wv

(n{di
zdiwv

zbwv
)
, ð2Þ

Figure 2. Heap-Dijkstra algorithm.
doi:10.1371/journal.pone.0027506.g002
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yzjd
~

n{d
zdi jd

zmjdX
j
(n{d

zdi j
zmj)

, ð3Þ

hxz~
mxzzazX

z0 (mxz0zaz0 )
ð4Þ

3. Bio-term Entropy over Topics

In information theory, entropy is a measure of the

uncertainty associated with a random variable. It is also a

measure of the average information content one is missing

when one does not know the value of random variable. In our

Bio-LDA model, we can compute the bio-term entropies over

topics as shown in equation 5, which indicates that bio-terms

tend to address a single topic or cover multiple topics. The

Figure 3. An intuitive example of the path finding algorithm.
doi:10.1371/journal.pone.0027506.g003
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higher the entropy is, the more diverse the bio-term is over

topics.

Entropy bið Þ~{
XT

z~1

hbiz
loghbiz

ð5Þ

4. Semantic Association

Kullback-Leibler divergence (KL divergence) is a non-symmet-

ric measure of the difference between two probability distributions.

In our Bio-LDA model, we used the KL divergence as the non-

symmetric distance measure for two bio-terms over topics, as

shown in equation 6.

KL bi,bj

� �
~
XT

z~1

hbiz
log

hbiz

hbjz

ð6Þ

The symmetric distance measure of two bio-terms over topics is

the sum of two non-symmetric distances, as shown in equation 7.

sKL bi,bj

� �
~
XT

z~1

hbiz
log

hbiz

hbjz

zhbjzlog
hbjz

hbiz

 !
ð7Þ

sKL divergence measures the similarity between two probability

distributions. In our Bio-LDA model, each bio-term is represented by a

probability distribution which designates the strength of the semantic

association between the bio-terms and a set of topics (or research issues).

Thus sKL divergence is used to calculate the similarity between a pair of bio-

terms by means of measuring the similarity between the two probability

distributions associated with each bio-term of the pair. The smaller the sKL

score is, the more semantically relevant the two bio-terms are in terms of their

involvements with a set of research issues. This association score can combined

with the pre-knowledge of bio-terms (i.e. Chem2Bio2Rdf) for novel knowledge

discovery. The score of a given directed semantic association is

simply given by the accumulated distance between bio-terms on a

path, as shown in equation 8. The score of an undirected path is

given by the accumulated symmetric distance between bio-terms,

as shown in equation 9. In this study, we do not evaluate the

direction of the associations, focusing only on the association

score calculated by the symmetric distances. The association

search in Bio-LDA model is finding the associations with the

smallest score.

Results

We implemented the path finding algorithm described in

section 2.2 using C++ and created a tool called associationsearch

which will find paths of given length between any two items in our

Chem2bio2rdf dataset. These items can be compounds, drugs,

genes, pathways, diseases, or side-effects. These paths are then

ranked (i.e., evaluated) by the Bio-LDA model described in section

2.3, and the user can select a maximum number of paths to return.

The paths are then visualized using a flash interface within a

browser.

We present two case studies that apply this method to address

biological research problems.

3.1 Finding gene associations between thiazolinediones
and cardiac side-effects

Insulin-sensitizing drugs from the thiozalinedione class have

revolutionized the treatment of insulin-dependent diabetes yet

have been beset by rare but serious side effects. The drugs

Troglitazone, Rosiglitazone and Pioglitazone are thought to work

Figure 4. Graphical representation of the Bio-LDA. a,b,m are the Dirichlet priors for the distribution of bio-terms over topics, topic over words,
and journals over topics. B is the total set of bio-terms. T denotes the total set of topics. D is the overall set of documents. Nd is the set of words in a
given document d.
doi:10.1371/journal.pone.0027506.g004
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Figure 5. Ranked association graphs between myocardial infarction and Rosiglitazone (top) or Troglitazone (bottom) identify SAA2,
APOE, ADIPOQ, and CYP2C8 genes as significant for Rosiglitazone. The red-outlined box is the starting node and ending node, that is, the bio-
terms associations that we are searching for. Yellow-outlined boxes are the intermediate bio-terms. Other boxes indicate the types of the connection
between the two intermediate bio-terms that it is connected to, which gives a hint on which database this connection is originated from.
doi:10.1371/journal.pone.0027506.g005
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by binding to the PPAR-gamma receptor, one of several nuclear

receptors involved in fatty acid and glucose uptake. However,

these receptors are also known to be involved in much larger scale

regulation and metabolic processes including metabolism of

xenobiotics (foreign substances in the body). Interference of some

of these processes may be responsible for the side effects that have

caused these drugs to ‘‘fall from grace’’: Troglitazone was

withdrawn from the U.S. market in 2000 due to adverse liver

side effects; Rosiglitazone was until recently believed to be safe as it

does not appear to have the hepatic side effects of Trogitazone,

however it was restricted in the U.S. in 2011 and removed from

the European market entirely in September 2010 due to increased

risk of myocardial infarction in patients. Pioglitazone is currently

under review.

We used our algorithms to examine ranked associations

between Rosiglitazone and myocardial infarction, and Troglita-

zone and myocardial infarction, to see if we could identify gene

associations that may account for the cardiac effects of

Rosiglitazone. The association graphs for these two drugs are

shown in Fig. 5. The red-outlined box is the starting node and ending node,

that is, the bio-terms associations that we are searching for. Yellow-outlined

boxes are the intermediate bio-terms. Other boxes indicate the types of the

connection between the two intermediate bio-terms that it is connected to, which

gives a hint on which database this connection is originated from. Note that

Fig. 5 and Fig. 6 are screenshots of the visualization provided by our

application in which users can interactively moving the nodes and clicking the

nodes to obtain more information about the node. The graphs show that

there is a strong ranked association between Rosiglitazone and

myocardial infarction which is not present for Troglitazone,

particularly involving four genes: SAA2 (Serum Amyloid A 2),

APOE (Apolipoprotein E), ADIPOQ (Adiponectin) and CYP2C8

(Cytochrome P450 2C8). Examination of these genes indicates

that all are involved in cardiovascular lipid metabolic processes. In

particular, activation of ADIPOQ results in increased HDL (‘‘good’’

cholesterol) and activation of APOE results in increased LDL levels

(‘‘bad’’ cholesterol), a potential mechanism that would account for

Rosiglitazone’s cardiac side effects as has recently been reported in

the literature [46]. The next obvious question is whether

Pioglitazone interacts with these genes. Association graphs

between Pioglitazone and myocardial infarction (and Pioglitazone

and Rosiglitazone) show strong associations between Pioglitazone

and ADIPOQ, but not with APOE, indicating that Pioglitazone

should increase HDLs but not LDLs. This is confirmed clinically

by recent literature [45].

We further evaluated these relationships by directly examining

the ranked paths from the BioLDA algorithm. Table 2 and 3

shows the symmetric KL divergence for semantic associations for

the two pairs of bio-terms.

3.2 Associations between non-steroidal anti-
inflammatory drugs (NSAIDs), inflammation and
Parkinson Disease

Recent research [47] has shown that use of Ibuprofen, a non-

steroidal anti-inflammatory drug, is clinically associated with

Figure 6. Ranked association graphs between Ibuprofen and Parkinson Disease (top) as well as Aspirin and Parkinson Disease. The
red-outlined box is the starting node and ending node, that is, the bio-terms associations that we are searching for. Yellow-outlined boxes are the
intermediate bio-terms. Other boxes indicate the types of the connection between the two intermediate bio-terms that it is connected to, which gives a hint
on which database this connection is originated from.
doi:10.1371/journal.pone.0027506.g006

Table 2. Symmetric KL divergence for paths between Troglitazone and Myocardial infarction.

Path sKL divergence

Troglitazone,SLC29A1,Dipyridamole,Myocardial-infarction 16.151

Troglitazone,Edema,Iodixanol,Myocardial-infarction 23.105

Troglitazone,Edema,Dipyridamole,Myocardial-infarction 24.086

Troglitazone,Congestive-heart-failure,Bisoprolol,Myocardial-infarction 24.151

Troglitazone,Edema,Bisoprolol,Myocardial-infarction 24.744

Troglitazone,PPARG,Rosiglitazone,Myocardial-infarction 25.454

Troglitazone,Diabetes-Mellitus,-Type,Benazepril,Myocardial-infarction 25.732

Troglitazone,Syncope,Dipyridamole,Myocardial-infarction 26.176

Troglitazone,Hyperglycemia,Rosiglitazone,Myocardial-infarction 26.835

Troglitazone,Syncope,Bisoprolol,Myocardial-infarction 26.953

Troglitazone,Hyperglycemia,Pioglitazone,Myocardial-infarction 27.491

Troglitazone,PPARG,Pioglitazone,Myocardial-infarction 28.126

Troglitazone,Edema,Nicardipine,Myocardial-infarction 28.175

Troglitazone,Edema,Betaxolol,Myocardial-infarction 28.564

Troglitazone,Weight-gain,Bisoprolol,Myocardial-infarction 28.804

Troglitazone,Edema,Fosinopril,Myocardial-infarction 29.052

Troglitazone,Edema,Amoxapine,Myocardial-infarction 29.147

Troglitazone,Edema,Oxaprozin,Myocardial-infarction 29.222

Troglitazone,Malaise,Betaxolol,Myocardial-infarction 29.315

Troglitazone,Edema,Cilazapril,Myocardial-infarction 29.361

doi:10.1371/journal.pone.0027506.t002
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Table 3. Symmetric KL divergence for paths of Rosiglitazone and Myocardial infarction.

Path sKL divergence

Rosiglitazone,Myocardial-infarction 17.231

Rosiglitazone,Congestive-heart-failure,Bisoprolol,Myocardial-infarction 21.085

Rosiglitazone,Heart-failure,Bisoprolol,Myocardial-infarction 22.067

Rosiglitazone,Hyperglycemia,Pioglitazone,Myocardial-infarction 22.411

Rosiglitazone,Hyperglycemia,Cilazapril,Myocardial-infarction 24.814

Rosiglitazone,Hyperglycemia,Betaxolol,Myocardial-infarction 24.892

Rosiglitazone,Hypoglycemia,Bisoprolol,Myocardial-infarction 25.269

Rosiglitazone,Hyperglycemia,Oxaprozin,Myocardial-infarction 25.494

Rosiglitazone,Hyperglycemia,Diazoxide,Myocardial-infarction 25.767

Rosiglitazone,Bilirubinemia,Eletriptan,Myocardial-infarction 26.273

Rosiglitazone,Bilirubinemia,Dolasetron,Myocardial-infarction 26.439

Rosiglitazone,Diabetes-Mellitus,-Type,Benazepril,Myocardial-infarction 26.634

Rosiglitazone,Hyperglycemia,Bosentan,Myocardial-infarction 26.683

Rosiglitazone,Hyperglycemia,Candesartan,Myocardial-infarction 26.688

Rosiglitazone,Hyperglycemia,Quinapril,Myocardial-infarction 27.381

Rosiglitazone,Diabetes-Mellitus,Pioglitazone,Myocardial-infarction 27.821

Rosiglitazone,Hypoglycemia,Betaxolol,Myocardial-infarction 27.832

Rosiglitazone,Hypoglycemia,Pioglitazone,Myocardial-infarction 28.316

Rosiglitazone,Dizziness,Bisoprolol,Myocardial-infarction 28.681

Rosiglitazone,Nasopharyngitis,Bosentan,Myocardial-infarction 28.699

doi:10.1371/journal.pone.0027506.t003

Table 4. Symmetric KL divergence for paths between Ibuprofen and Parkinson Disease.

Paths KL

Ibuprofen PharmGKB CYP2C9 HPRD POR CTD Parkinson-Disease 28.077

Ibuprofen Drugbank PTGS2 CTD-HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 33.049

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia HSPA1L HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 36.573

Ibuprofen PharmGKB CYP2C9 PharmGKB Haloperidol PharmGKB Parkinson-Disease 37.339

Ibuprofen PharmGKB Hemorrhage CTD GABRR1 CTD Parkinson-Disease 37.791

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia HSPA4 CTD Parkinson-Disease 37.842

Ibuprofen PharmGKB Hemorrhage CTD HRH1 HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 38.153

Ibuprofen PharmGKB Hemorrhage CTD RARG CTD Parkinson-Disease 38.558

Ibuprofen PharmGKB Hemorrhage CTD MAP2K2 CTD Parkinson-Disease 38.858

Ibuprofen PharmGKB Hemorrhage CTD HSPA5 CTD-HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 39.055

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia MMP8 CTD Parkinson-Disease 39.668

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia SCNN1A CTD Parkinson-Disease 39.783

Ibuprofen PharmGKB Hemorrhage CTD GOT1 CTD Parkinson-Disease 39.896

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia HSPA1A CTD-HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 40.331

Ibuprofen PharmGKB Hemorrhage CTD HSP90B1 CTD Parkinson-Disease 40.886

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia IL1A HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 41.056

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia MMP12 CTD Parkinson-Disease 41.127

Ibuprofen PharmGKB Hemorrhage HUGE_Genopedia-HUGE_Phenopedia SELP CTD Parkinson-Disease 41.278

Ibuprofen PharmGKB Hemorrhage CTD RARB CTD Parkinson-Disease 41.455

Ibuprofen PharmGKB Hemorrhage HUGE_Phenopedia SCGB1A1 CTD Parkinson-Disease 41.47

doi:10.1371/journal.pone.0027506.t004
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reduced risk of Parkinson Disease. This effect is not found with

other painkillers, such as Aspirin and Acetaminophen (Paraceta-

mol). It is speculated that this effect may be due to the anti-

inflammatory effects of Ibuprofen on neuroinflammation. We

performed searches to (i) identify paths containing genes linking

Ibuprofen, inflammation and Parkinson Disease (through three

searches – Ibuprofen-Parkinson Disease, Ibuprofen-inflammation

and inflammation-Parkinson Disease) and (ii) identify genes

associated with Ibuprofen but not with the other NSAIDS (in

case this could be used to account for the differential activity with

Aspirin, etc). Our searching identified 70 genes that are associated

with Ibuprofen, inflammation and Parkinson Disease, 9 of which

are known to be linked to inflammation: IL1A, IL1B, IL1RN, IL6,

LTA, NFKB1, NFKBIA, PTGS2 and TNF.

Of particular note, these searches identified a clear direct

connection between the primary target of Ibuprofen (PTGS2, or

Cox2 – Ibuprofen is a nonspecific inhibitor that also targets Cox1),

and Parkinson Disease. This link maps to experimental data in the

CTD dataset. The Cox2 link is supported by a variety of recent

research [48–52] which indicates that neuroinflammation is

implicated in Parkinson’s Disease, and that the Cox2 gene is

implicated in this inflammation process. Indeed, selective and

nonselective Cox2 inhibitors have been examined for their effect in

this inflammatory process [52]. Selective Cox2 inhibitors may be

of particular interest.

In our second search, we found a single gene, AMBP, which is

differentially associated with Ibuprofen (and not with other

NSAIDS), and which is associated with Parkinson disease (but

not inflammation), based on a 1996 study which showed the

potential of AMBP as a biomarker for the disease [53]. Several of

the results searches are shown in Figure 6. The red-outlined box is the

starting node and ending node, that is, the bio-terms associations that we are

searching for. Yellow-outlined boxes are the intermediate bio-terms. Other boxes

indicate the types of the connection between the two intermediate bio-terms that

it is connected to, which gives a hint on which database this connection is

originated from.

We further evaluated these relationships by directly examining

the ranked paths from the BioLDA algorithm. Table 4 and 5

shows the symmetric KL divergence for semantic associations for

the two pairs of bio-terms. The smaller the KL divergence is, the

more thematically similar the bioterms along the path are in the

literature. In Table 4, the path Ibuprofen-PTGS2-PD ranks high.

Teismann et al. [54] studied the relationship between COX-

2(PTGS2) and Parkinson Disease by MPTP (1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine) model. MPTP induces Parkinson

Disease and COX-2. The authors claimed that COX-2 inhibitors

may be therapies for Parkinson Disease if the inhibitors have

ability to penetrate the blood brain barrier. Many paths that

connect Ibuprofen and Parkinson Disease through Hemorrhage

and other genes have shown small KL divergence. Several studies

have shown that Ibuprofen is helpful in preventing or decreasing

susceptibility to different types of hemorrhage [55–58].

Discussion

In this paper, we propose a scalable path finding algorithm and

a topic model called Bio-LDA so as to mine semantic associations

in integrated platform of various biomedical databases. The path

finding algorithm can identify semantic paths between any two

classes or instances in the linked open data in the biomedical

domain. The Bio-LDA model extracts distributions of topics for

bio-entities, which can provide topic-sensitive ranking of identified

semantic associations. The two use cases presented in the paper

demonstrate the rich possibilities that the proposed algorithm and

Table 5. Symmetric KL divergence for paths between Aspirin and Parkinson Disease.

Paths KL

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia CHEK1 CTD Parkinson-Disease 25.682

Aspirin PharmGKB UGT1A6 CTD Parkinson-Disease 26.031

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia CASP9 CTD Parkinson-Disease 26.771

Aspirin PharmGKB Colorectal-Neoplasms CTD IKBKB CTD Parkinson-Disease 27.084

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia NFKB1 CTD-HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 27.437

Aspirin PharmGKB LTC4S HPRD MGST1 CTD Parkinson-Disease 27.678

Aspirin PharmGKB Colorectal-Neoplasms CTD DDIT3 CTD Parkinson-Disease 27.919

Aspirin PharmGKB Colorectal-Neoplasms CTD CCNB2 CTD Parkinson-Disease 27.979

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia TFRC CTD Parkinson-Disease 28.226

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia GSTA4 CTD-HUGE_Genopedia-HUGE_Phenopedia Parkinson-Disease 28.416

Aspirin PharmGKB Colorectal-Neoplasms c2b2r-CTD-HUGE_Genopedia-HUGE_Phenopedia-PharmGKB MTR CTD-HUGE_Genopedia-HUGE_Phenopedia
Parkinson-Disease

29.2

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia NFE2L2 CTD Parkinson-Disease 29.642

Aspirin PharmGKB Colorectal-Neoplasms CTD CCNA2 CTD Parkinson-Disease 29.669

Aspirin PharmGKB Colorectal-Neoplasms CTD RRM2 CTD Parkinson-Disease 30.126

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia TGFB1 CTD Parkinson-Disease 30.249

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia BCL2L1 CTD Parkinson-Disease 30.357

Aspirin PharmGKB Colorectal-Neoplasms CTD GCLM CTD Parkinson-Disease 30.386

Aspirin PharmGKB Colorectal-Neoplasms CTD MAPK8 CTD Parkinson-Disease 30.58

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia HIF1A CTD Parkinson-Disease 30.805

Aspirin PharmGKB Colorectal-Neoplasms CTD-HUGE_Genopedia-HUGE_Phenopedia CHEK1 CTD Parkinson-Disease 25.682

doi:10.1371/journal.pone.0027506.t005
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model can contribute to crucial issues in biomedical domain,

including Polypharmacology, drugs related to inhibition of a

certain gene involved in diseases, and drug-like compounds. The

application discussed in this paper is made available through http://cheminfov.

informatics.indiana.edu:8080/yuysun/hychembiospace.html.

Our path finding algorithm can be readily applied to an

extensible network of linked open data both in the biomedical

domain and other domains. In addition, based on the Bio-LDA

model, we calculate the entropy and KL divergence for genes,

compounds and diseases in the paths. The entropy shows to what

extent the bio-terms are involved in multiple topics among

biomedical literature; the KL divergence indicates the similarity

between two bio-terms involved with different topics. Values

extracted from another knowledge base (Medline) can be further

integrated with user preferences to assign weight to semantic

associations or to rank semantic associations. We also adopt expert

and literature investigation to assess the result and value of the

proposed algorithm, which indicates the algorithm can help

discover invisible knowledge and identify potential research issues

by obtaining and integrating existing knowledge.

For future work, we plan to further explore the potential of

using the knowledge extracted through topic mining model to rank

semantic associations. Moreover, we plan to design a parallel

implementation of Bio-LDA and semantic association finding

algorithm on MPI and MapReduce, which smoothes out storage

and computation bottlenecks. Meanwhile, we would also like to

establish an interactive searching system for semantic associations

based on Chem2Bio2RDF database and extend our algorithm to

incorporate heuristics from user preferences, context, or domain-

specific rules.
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