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Abstract

The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due
to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection
method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram
(connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral
symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C.
elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits.
Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation,
chemosensation, and navigation) that occurs among the structurally segregated biological circuits to produce higher-order
complex behaviors.
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Introduction

The brain consists of a remarkably complex hierarchical

structure ranging from ion channels of individual neurons to

systemic neuronal networks of subsystems responsible for specific

functions. To perform natural computation efficiently, the brain

has evolved to have specialized modules with locally dense

connections to integrate functions and produce complex behav-

iors. Because brain structure is closely related to function, an

understanding of the topological structure of neuronal organiza-

tion in the brain is crucial for insight into how neuronal networks

perform their precise functions [1,2,3,4,5,6,7,8]. To uncover the

neurobiological mechanisms of brain functions, mapping of the

complete wiring diagram of a neural system has been attempted;

this field is called connectomics [2,9]. Although connectomics is

presently at an early stage and data mining related to its

application has only recently begun, the connectomics approach

may eventually shed light on the fundamental principles

underlying brain functions and the pathological mechanisms of

neuropsychiatric disorders that arise from faulty wiring, such as

schizophrenia and autism [2,5,6,9,10,11,12].

As accurate large-scale data describing the topology of networks

become available in various fields, complex network analysis tools

have been developed and applied. The study of complex networks

involves the investigation of important topological features of a

network with connections among its nodes that are neither purely

regular nor purely random. This technique has been applied to

complex networks of the real world, such as the worldwide web

[13], metabolic networks [13], food webs [13], and neural [2,5,7]

and social networks [2,5,7,13,14]. These complex networks have

shown universal structural features including small-world proper-

ties [13,14], power-law degree distributions [13], the existence of

repeated local motifs [2,15], and robustness and fragility against

attacks [13]. Recently, the brain, a typical example of a complex

network, was found to exhibit small-world topology from the

microscopic level (e.g., the neuronal network of C. elegans) [14,16]

to the macroscopic level [2,16,17,18]. Scale-free degree distribu-

tions are observed in fMRI-based voxel networks of human brains

[2], and structural and functional motifs can be detected in the

large-scale cortical networks of macaque monkeys and cats [2].

Robustness and fragility of brain structural networks with respect

to lesions and diseases have also been examined quantitatively

[7,12,18,19].

Another significant issue in complex network analysis is the

determination and characterization of the hierarchical cluster

structure in a network, i.e., the appearance of densely connected

groups of nodes with sparser connections among groups and their

association at higher levels [20,21,22]. Topological clusters in

brain structure may correspond to sets of distinct anatomical

modules of neurons [2,5,6,7,23,24,25]. Detection of cluster
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structure in the brain is of critical importance because it provides

valuable clues regarding the relationship between anatomical

clusters and functional circuits. Such a relationship is based on the

modular view of network dynamics, which assumes that different

groups of neurons perform different functions with some degree of

independence. Several studies have investigated the large-scale

network structure of the mammalian cortex and its association

with cortical function. Both the structure as a whole [2,6,7,23,25]

and subsystems [24] of the brain have several distinct anatomical

substrates (segregation) as well as functional connectivity (integra-

tion), implying an intimate association between structural clusters

and functional modules at the macroscopic level [8,17,18].

However, because of the complexity of the connectivity architec-

ture at the level of individual neurons, no studies have reported

whether the connectome of an entire nervous system exhibits a

hierarchical cluster structure.

Therefore, the aim of this study was to investigate the possible

existence of cluster structure in the neuronal network of the entire

nervous system of the nematode Caenorhabditis elegans (C. elegans)

using the updated version of its wiring diagram (connectome)

based on synaptic connection topology. The microscopic worm C.

elegans has 302 neurons with approximately 8,000 synapses and is

the only model organism in which the wiring diagram of the entire

nervous system is almost completely known [3,26]. We utilized this

connectome to determine whether a network of individual neurons

exhibits hierarchical cluster structure with non-uniform synaptic

connections or a random network structure with homogeneous

synaptic connections.

To detect a possible hierarchical cluster structure in the C.

elegans connectome, we used the modularity-based community

detection algorithm for directed weighted networks [20,27].

Modularity is a quantitative measure defined as the number of

edges falling within groups minus the expected number in an

equivalent network with edges placed at random; positive values

demonstrate the possible presence of cluster structure [20,22,27].

A significant advantage of the modularity-based community

detection algorithm is that it can show a network to be indivisible

(i.e., that it contains no cluster structure) if no true division of the

network results in a positive modularity. Because a biological

neural network is inherently directed and weighted, we imple-

mented a recently introduced version of modularity function for

directed and weighted networks and applied it to the directed

weighted C. elegans connectome [27].

Although the modularity maximization approach of community

detection has become the most popular and powerful method in

the discipline, several recent studies have addressed some

problems with this method [28,29]. Because modularity optimi-

zation is known as an NP-complete problem, researchers have

used a set of approximation heuristics to obtain a near-optimal

community assignment vector without knowing the overall

properties of the modularity landscape. However, Good et al.

[29] examined the presence of an extremely rugged structure

around the top of the modularity landscape through extensive

computational validation of modular properties in many popular

networks. This finding implies that the modularity maximization

method may provide a great number of near-optimal vectors with

very inhomogeneous characteristics and may not permit the

determination of the goodness of each community vector without

prior non-topological knowledge about node characteristics

[28,29].

In the case of the C. elegans connectome, however, we have a

valid cue to overcome this issue: the information given by the

bilateral functional symmetry of the neuronal cells as a constraint

for optimization. Thus, we first show that the conventional

implementation of modularity maximization using the spectral

method and another popular greedy algorithm cannot produce

biologically valid community assignment vectors. Second, we

propose a novel scheme for constrained modularity optimization

using a simulated annealing procedure. As a stochastic optimiza-

tion method, this procedure allows a comparison of a diverse set of

community assignment vectors for identification of a near-optimal

partition. Through the extensive computational task of producing

various community assignment vectors, we finally achieved a

stable vector with the highest modularity value under given

biological constraints. After detecting topological clusters in the C.

elegans connectome, we investigated their network properties

including spatial distribution of the neurons within clusters and

their association with experimentally identified functional circuits.

Materials and Methods

Materials
We analyzed the one-dimensional spatial representation of the

C. elegans wiring diagram recently published by Chen et al. [30]

and Varshney et al. [31], which was updated from the dataset of

White et al. [3] where connections were identified by electron

microscopic reconstructions. The data contained information on

the direction and number of connections via chemical synapses

and electrical junctions among neurons in the entire nervous

system as well as one-dimensional spatial positions of neurons (i.e.,

somal centers) along the anterior-posterior body axis. All

connections between non-pharyngeal neurons were included

except those of CANL/R and VC6, which did not have obvious

synapses. Consequently, the model connectome had 279 neurons

(pharyngeal and unconnected neurons excluded) with 6,393

chemical synapses and 890 electrical junctions. Data sets are

available at http://www.wormatlas.org/neuronalwiring.html.

Modularity-based community detection with external
constraints using a simulated annealing method

In this study, the complete neuronal wiring diagram of C. elegans

through chemical synapses and electrical junctions (connectome)

was considered as a directed weighted network with basic

topological attributes including degree, weight, and strength

[32]. The degree equals the number of synaptic partner neurons

of a neuron and the weight is the appropriate sum of synapses

between specific neuronal partners. The strength represents the

total weights of synaptic connections afferent to or efferent from a

neuron. A weighted asymmetric adjacency matrix was devised to

Author Summary

Caenorhabditis elegans (C. elegans) is a tiny worm whose
neuronal network is fully revealed. Since the modular
organization in a network of individual neurons interwo-
ven through synapses is not yet fully explored owing to
incredibly complex connectivity architecture, this study is
designed to investigate hierarchically organized modules
in this complete wiring diagram (connectome) of this
worm. We used the modularity-based community detec-
tion algorithm and found that C. elegans had 5 anatomical
clusters in the C. elegans connectome, which corresponded
to experimentally-identified functional circuits. We found
that the hierarchical organization of the 5 clusters explains
the systemic cooperation including mechanosensation,
chemosensation, and navigation that occurs among the
structurally-segregated biological circuits to produce
higher-order complex behaviors.

Cluster Analysis of C. elegans Connectome
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illustrate the synaptic connections between 279 neurons. The

matrix size was accordingly 2796279 and the sum of the weights

of each element represented the number of synapses from one

neuron to another. The summed weight of all elements in the

adjacency matrix (the total number of chemical synapses + double

the total number of electrical junctions) was 8171.

To identify possible cluster structures in the C. elegans

connectome, we used the modularity-based community detection

algorithm for a directed and weighted network. The modularity

value, Q, indicates the degree to which a given partition succeeds

in maximizing intra-cluster weights and minimizing inter-cluster

weights compared to a null model given a strength sequence. To

detect clusters in a directed and weighted network, we imple-

mented a directed network version of modularity, which is defined

as follows:

Q~
1

4W
sT (BzBT )s, ð1Þ

Bij~Aij{
Sin

i Sout
j

W
, ð2Þ

where A is the adjacency matrix of a directed weighted network, Si
in

and Si
out indicate incoming and outgoing strengths, respectively, of

neuron i and W~
P

ij Aij~
P

i Sin
i ~

P
i Sout

i is the global sum of

the weights of all dyads. Hence, Bij becomes a measure of the extent

to which the number of connections from neuron j to neuron i are

prominent in comparison with a randomized network.

After achieving the modularity function, we needed to search

for a community assignment vector s that approximates the global

maximal value of Q. To prevent the generation of suboptimal

outcomes when using several deterministic algorithms, we

implemented a stochastic hill climbing approach [21] to validate

diverse near-optimal values. The algorithm is designed following

the standard scheme of a metropolis algorithm, setting the

objective function as a modularity function. First, we randomly

assigned groups of nodes and flipped each nodal membership

depending on computational temperature, T, and the marginal

modularity gained by this action. As this optimization procedure

repeats, T decreases so that we can search more limited areas with

higher modularity values. After achieving an optimized vector with

this individual nodal level manipulation, we repeated the same

metropolis procedure in the level of communities. That is, merging

two clusters with respect to the modularity gain. This method is

the most accurate to date and contains assignment vectors in its

pool of solutions that can be achieved by other community

detection methods [21,28].

In addition to this standard procedure, we considered an

optimization method with external constraints. Using the

information given by non-topological prior knowledge, we

constrained the type of solutions [28,29]. In the present study,

the given constraint is the bilateral symmetry of neurons, which

indicates that each bilateral pair should be classified in the same

cluster. Thus, we searched for community assignment vectors

within the global modularity landscape that satisfied this condition.

This additional term can be easily implemented in the algorithm

by providing a simultaneous cluster membership change constraint

for each bilateral pair.

Computing cluster proximity
We performed an additional analysis on the proximity of the

obtained clusters. Following the second phase optimization

procedure introduced in the fast unfolding algorithm [29], we

built a new network whose nodes consisted of communities found

by the initial simulated annealing algorithm and the link weights

between the newly assigned nodes (i.e., summed values between

inter-cluster weights). We then applied the same modularity

maximization approach as described previously. This procedure

revealed clusters of clusters where significant levels of clustering

were present between previously obtained clusters.

Results

Identification of hierarchical clusters in the C. elegans
connectome

To examine the presence of hierarchical cluster structure in the

C. elegans connectome, we first estimated the modularity of this

connectome within a framework of modularity-based community

detection [20,27]. This method seeks optimal divisions of the

network into densely connected subgroups by maximizing the

modularity Q. Because the C. elegans connectome had a power-law

distribution of synaptic weights (Figure S1) and synaptic directions

between neuronal connections, it was necessary to include the

directionality and the number of synapses among neurons in the

asymmetrically weighted elements of the adjacency matrix.

Although the modularity maximization approach of community

detection has become a standard methodological means to detect

possible community structures of networks, recent theoretical

works have shown extreme degeneracy of solutions that produce

near-optimal modularity values. One way to overcome this

problem is to reduce the number of community assignment

vectors using information given by prior knowledge of the node

properties. Given that most bilateral neuronal pairs of C. elegans

have similar functional roles [3,26,33] and accepting the principle

of structure-function association in evolutionary biology [8,29],

structural clusters driven by an appropriate community detection

method should not assign each member of a bilateral neuronal

pair to a different structural cluster. We thus proposed a novel

scheme to obtain an optimal community assignment vector. The

simulated annealing method with external constraints in this study

was utilized to find an optimal community assignment vector

among the pool of solutions satisfying the bilateral symmetry

condition.

Figure 1A depicts the properties of diverse sets of solutions

derived using the simulated annealing method without external

constraints, the spectral detection method, and the fast unfolding

algorithm. The spectral detection algorithm is one of the most

popular algorithms because of its short computational time [22].

The fast unfolding algorithm is one of the most accurate and fast

deterministic algorithms, resulting in a high modularity value

[12,28]. However, Figure 1A demonstrates that the set of solutions

driven by the simulated annealing method [21] produced a higher

modularity value than the other two solutions. Moreover, the

solutions of the two methods had low biological plausibility. The

number of separated left/right pairs of each community

assignment vector was 8 and 9 of the 93 bilateral neuronal pairs

(totally 186 neurons), respectively, whereas the simulated anneal-

ing algorithm produced solutions with less-separated bilateral pairs

and comparable modularity values. Figure 1B and Figure 1C

present the modularity values and the similarity of solutions

derived using the simulated annealing method with external

constraints. To show the stability of solutions in the high

modularity region of the community assignment vectors with no

separated bilateral pairs, we implemented a parameter called

‘variation of information’ that quantified the difference between

two community assignment vectors. Variation of information

Cluster Analysis of C. elegans Connectome
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between two partitions C and C’ is defined as follows:

V (C,C
0
)~V (X ,Y )~H(X jY )zH(Y jX ), ð3Þ

where X and Y denote the vectors representing the cluster

assignment of community divisions C and C’, respectively, H(X|Y)

is the conditional entropy indicating the amount of additional

information needed to describe C given C’, and H(Y|X) indicates

the opposite condition. Consequently, V(C,C’) = 0 indicates that

two partitions are exactly identical and thus do not require any

additional information to describe each other whereas a higher

value indicates a greater difference in community assignment [34].

Because the maximum possible value of the difference between

two partitions of a network having 279 nodes in terms of V is log

279, we rescaled the values to range from 0 to 1 by dividing the

original value by log 279 [34]. Figure 1C shows that the solutions

obtained using the external constraint condition exhibited stable

properties in the highest modularity region (Q.0.480) where each

partition pair exhibited very low V values (0.12260.002).

Through an extensive computational analysis (over 10,000 trials

of simulated annealing with external constraints), we obtained an

optimal cluster assignment with Q = 0.490, resulting in no

separated bilateral neuronal pairs. This value was substantially

higher than the average Q (0.28360.009) of null networks

obtained by swapping synaptic connections between neuronal

pairs of the original network while preserving the out-strengths of

the neurons [35]. With this maximal Q value, we found 5 distinct

anatomical clusters in the C. elegans connectome. This result

indicates that, among the possible connection distributions in the

original strength sequence, the neuronal architecture of C. elegans

exhibits a statistically significant modular structure.

We also measured the topological proximity between the

obtained clusters to determine whether a hierarchical relationship

was present between them. Following the second phase optimi-

zation procedure of the fast unfolding algorithm, we built a new

network whose nodes are communities found by the initial

simulated annealing algorithm. ‘Link weights’ between the newly

assigned nodes consist of summed values between inter-cluster

weights. By applying the modularity maximization algorithm to

this new network, we showed that the previously obtained 5

clusters further clustered into 2 clusters in the higher level. This

procedure allowed us to obtain a hierarchical dendrogram of the 5

modular clusters. Former branching was assigned a nomenclature

of 1 (2 in the left digit), and later branching was called 1 (or 2

rightward). For instance, cluster 11, 12 and 13 have the same

mother. Out of 279 neurons, 57 neurons were in cluster 11, 79 in

cluster 12, 14 in cluster 13, 74 in cluster 21, and 55 in cluster 22.

Cluster information for each neuron is listed in the Table S1.

The topological relationships based on synaptic connections

within and among the clusters are demonstrated in the reordered

adjacency matrix of the C. elegans connectome in Figure 2A.

Although the off-diagonal elements of the adjacency matrix for

inter-cluster links had low values, large values of the diagonal

elements in Figure 2A indicate that most of the links were intra-

cluster for each of 5 clusters. Figure 2A also provides information

on the hierarchical relationship between the clusters. As illustrated,

we observed many ties across the clusters that depended on

hierarchical proximity: cluster 11, 12, and 13 formed a grand

cluster and cluster 21 and 22 formed another grand cluster. The

complete hierarchical dendrogram of the entire neurons, which

accords with this cluster level hierarchical relationship, is

presented in the supplementary information (Figure S6).

The fact that the length of C. elegans is about ten times greater

than its diameter allowed us to consider the positional distributions

of neurons within each cluster in one dimension [3,26,30,33].

Figure 2B shows the average distances between the somata of

neurons within each cluster and between clusters. Between inter-

cluster neurons, the average distance was smaller than 0.5 unit

length (Figure 2B), whereas the two largest proximal ganglia

groups (groups of neurons aggregated based on the positions of

their cell bodies), G1 to G3 and G6 to G10, were located at large

average distances from each other (Figure 2C). While C. elegans

neurons are spatially concentrated in a manner related to their

ganglionic affiliation, we failed to observe a strong spatial

localization of neurons belonging to the same cluster, except for

those in clusters 11 and 12. We estimated the density of the somata

of all neurons on the horizontal plane along the anterior-posterior

body axis of the animal (Figure 2D). We found that clusters 11 and

12 were densely localized in the head. In contrast to the extreme

spatial localization of ganglia (Figure 2D) [36], we detected a

Figure 1. Diverse set of solutions obtained by the simulated
annealing method. (A) Modularity and the number of separated
bilateral pairs computed from various community assignment vectors
obtained through the simulated annealing method without external
constraints. The green triangle indicates the corresponding values for
an assignment vector obtained using the fast unfolding method and
the red square indicates the corresponding values for an assignment
vector obtained using the spectral method. (B) Modularity value
reordered for the various assignment vectors obtained through 1,642
trials of simulated annealing with external constraints. (C) Cluster
similarity between the corresponding 1,642 vectors (reordered)
measured by variation of information.
doi:10.1371/journal.pcbi.1001139.g001
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body-spanning cluster, cluster 22, that was distributed from the

head to the tail of the worm’s body (Figure 2D). We also noted the

presence of clusters 13 and 21, which loosely spanned the anterior

and posterior parts of the body, respectively.

Membership properties of structural clusters
We examined the compositions of neuronal types and

ganglionic affiliations of neurons within clusters as shown in

Figure 3. The diversity of neuronal types for a cluster was

quantitatively measured using the index of qualitative variation

(IQV) (see SI for detailed information) [37]. The IQV measures

the heterogeneity of composition in a cluster; high IQV scores for

a cluster indicate that the cluster is composed of various neuronal

types or ganglionic neurons. In other words, if a set is composed of

only a few dominant types, the IQV approaches 0, and it reaches 1

in the opposite case. Except for cluster 22, the clusters exhibited

IQV values ranging from 0.78 to 0.98, indicating that the majority

of the clusters did not possess dominant neuronal types (Figure 3A).

In addition, four of 5 clusters did not display dominant

neurotransmitter types (Figure S2). The single exception was

cluster 22, which consisted of 90% motor neurons and had an

IQV value of 0.25 (Figure 3B) (also see Figure S4). All ganglia

exhibited a rich diversity of cluster affiliations in their membership

(Figure 3A and C), indicating that low levels of overlaps exist

between ganglia and cluster assignments. Quantitatively, the IQV

between ganglia and cluster assignments was 0.36, indicating a low

level of correlation between the two assignments.

Functional cartography of the C. elegans connectome
Classification of nodes using their intra- and inter-cluster

connections has been used for the cartographic representation of

complex networks [21]. To determine whether the characteristics

of neurons in the context of a modular network are associated with

their biological functions, we estimated the within-module weight

(Z) and participation coefficient (P) of all neurons in the C. elegans

connectome. The within-module weight (Z) evaluates how strongly

a neuron is connected to other neurons within its cluster, and the

participation coefficient (P) quantifies how extensively the

connections of a neuron are distributed among different clusters.

By plotting the P and Z values for each neuron in a two-

dimensional plane, we characterized each neuron as either a

provincial or peripheral node, a hub, or a node with few within-

module degrees (see SI for detailed information). The P and Z

values for each neuron are listed in the Table S3. According to the

classification criteria suggested by Guimera and Amaral [21], we

found that most of the neurons belonged to groups of ultra-

peripheral nodes (role R1, 42 out of 279), peripheral nodes (role

R2, 196 out of 279) or non-hub connector nodes (role R3, 34 out

of 279) (Figure 4A). Neurons with the highest P values (P.0.62)

were concentrated in the non-hub connector class (role R3) of low

Z values (-2,Z,2) rather than in the connector hub class (Role

R6). This result indicates that the clusters in the C. elegans

connectome are connected via internal peripheral members.

Interestingly, most neurons (86%) classified as ultra-peripheral

nodes (role R1) with P = 0 were sensory or motor neurons, whereas

all of the neurons classified as connector hubs (role R6) were

command interneurons (AVA, AVB, PVC)[3]. These results

suggest that interneurons play an important role both in

connecting other neurons to form a cluster and in bridging

between clusters.

Association between topological clusters and functional
circuits

To determine whether our topological clusters have functional

relevance, we investigated how topological clusters were associated

with functional neural circuits already studied experimentally. In

Figure 4B, we present a diagram focusing on the two circuits

having the largest memberships: mechanosensation and chemo-

sensation [26,38,39].

C. elegans responds to various mechanical cues by means of

specific sensory neurons. ALM, AVM, PLM, and PVD have roles

in sensing mechanical touch [40,41,42]. These mechanosensory

neurons belonged to cluster 21 (Figure 4B). Cluster 21 also

contained some command interneurons, AVD and PVC, which

are responsible for transmitting mechanosensory inputs to motor

neurons [40,41,42] (Figure 4B).

In the case of chemosensation, chemical signals are sensed by

different sets of neurons. For example, the neurons AWC and ASE

have roles in sensing volatile and water-soluble compounds,

respectively [43,44]. AIA, AIY, AIZ, and AIB are the 1st layer

interneurons that receive synaptic inputs directly from sensory

neurons; together with the chemosensory neurons, they belong to

cluster 11. The 1st layer interneurons direct their outputs onto the

2nd layer interneurons (RIA, RIB, RIM, and SMB), which belong

to clusters 11 and 12.

When chemical/mechanical signals are processed and trans-

mitted within the C. elegans neural networks, the ultimate outcome

is movement and behavior mediated by the motor neurons

connected to body muscles. For instance, in chemosensation,

signals processed in the 2nd layer interneurons and mechanosen-

sory neurons pass onto motor neurons via command interneurons

(AVD and PVC) [3,38,39]. When body muscles contract, class A

motor neurons are important for backward movement, while class

B motor neurons have a role in forward movement [40,41,42]

(also see Figure S5 and Table S4). All of the class A and B motor

neurons belonged to cluster 22 (13 of 21 class A and 12 of 18 class

Figure 2. Optimal divisions of the C. elegans connectome using
the modularity-based community detection algorithm. (A)
Reordered adjacency matrix with cluster borders. The synaptic weights
are log-filtered. Cluster boundaries are colored in red. (B) Inter-cluster
distance graph. Neurons are grouped by the cluster that they belong to.
The average distance between all pairs of a neuron in cluster i and a
neuron in cluster j is calculated (between every two neurons of the
same cluster for a diagonal element). (C) Inter-ganglion distance graph
computed using the procedure of (B) based on ganglia. G1: anterior
ganglion, G2: dorsal ganglion, G3: lateral ganglion, G4: ventral ganglion,
G5: retrovesicular ganglion, 6: posterolateral ganglion, G7: ventral cord
neuron group, G8: pre-anal ganglion, G9: dorsorectal ganglion, G10:
lumbar ganglion. (D) Spatial density distributions for clusters along the
anterior-posterior body axis.
doi:10.1371/journal.pcbi.1001139.g002
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B neurons) and cluster 21 (8 of 21 class A and 6 of 18 class B

neurons). Interestingly, AVA neurons, the command interneurons

that are important for backward movement [40,41,42], and AVB

neurons, [40,41,42] responsible for forward movement, belonged

to cluster 21 together with some class A and B motor neurons,

indicating that the body-spanning clusters (21 and 22) are

responsible for forward and backward movement. Taken together,

these observations suggest that the topological clusters we observed

are closely associated with functional circuits in the C. elegans

connectome (Figure 4).

To quantitatively demonstrate the discriminative power of the

current community assignment, we used a boot-strap sample t-test.

The aim of this analysis was to determine whether a randomly

assigned community vector with the same cluster size distribution

would show a similar level of discriminative power for the circuits

represented in Figure 4B as the optimized solution. By assigning

the functional groups of neurons as chemosensory neurons, 1st

layer interneurons, 2nd layer interneurons, mechanosensory

neurons, command interneurons, and class A and B motor

neurons, we measured the extent to which the original community

assignment vector was consistent with the functional grouping of

the 84 neurons. The resulting V value between the optimized

assignment vector and the functional grouping was 0.348, whereas

the mean value between randomized vectors with the same cluster

size distribution and the functional grouping was 0.893 (60.002).

This result implies that the optimized vector’s concordance with

the functional groups was significant at the 99% confidence level.

Systemic integration among clusters to produce more
complex behaviors

To examine whether the deduced information flow was

reflected in the clusters at the level of synapse directionality, we

estimated the inward/outward synapse ratio of each cluster toward

other clusters. We considered that cluster 11, the major members

of which are sensory neurons, was the information-producing

cluster and thus should have mostly outward synapses. Indeed,

68% of cluster 11 neurons had outward synaptic weights

(Figure 5A). On the contrary, cluster 22, which was the

information-receiving cluster (i.e., composed of motor neurons),

had mainly inward synapses (65% having inward synaptic

weights). Clusters 12, 13 and 21, which possessed comparable

numbers of neuronal types (clusters 12 and 21) or were

predominantly composed of interneurons, exhibited balanced

levels of inward and outward synaptic weights.

To investigate the information flow between clusters in terms of

complex networks, we estimated ‘hub and authority scores’ of the

clusters in the C. elegans connectome. Hub and authority scores

measure the quality of the connections each node contains and

Figure 3. Neuronal composition of the structural clusters. (A) The IQV scores of all clusters with respect to the neuronal type and ganglion
composition. (B) Compositions of neuronal types for each cluster. ‘Sensory,’ ‘Inter,’ and ‘Motor’ denote sensory neurons, interneurons, and motor
neurons, respectively. (C) Cluster membership compositions of ganglia.
doi:10.1371/journal.pcbi.1001139.g003
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Figure 4. Functional implications of the derived clusters. (A) Functional cartography of neurons in the C. elegans connectome using the
within-module weight (Z) and participation coefficient (P) of each neuron. The neurons within each region can be defined as: (R1) ultra-peripheral
nodes; (R2) peripheral nodes; (R3) non-hub connector nodes; (R4) non-hub kinless nodes; (R5) provincial hubs; (R6) connector hubs; and (R7) kinless
nodes, based on the conventional rules for classification. The exact value ranges of P and Z for each class are denoted in Text S1 (Table S2). (B) Cluster
affiliation of neuronal pairs responsible for the behavior of a worm identified by previous biological experiments. The color of each neuronal pair
indicates its affiliation to a specific cluster.
doi:10.1371/journal.pcbi.1001139.g004
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show the significance of nodes in a directed network in a dynamic

regime (see SI for detailed information) [45]. In our cluster-to-

cluster network analysis, a cluster with a high hub score is linked

through outward synapses to clusters having many inward

synapses. Conversely, authoritative clusters have many inward

synapses from clusters that bridge to them through outward

synapses. We found that the authority scores of the clusters were

proportional to the intensity of inward synaptic weights (Figure 5A

and B). Thus, the body-spanning cluster 22, whose members are

predominantly motor neurons, acted as an ‘authority’ receiving

information from hub clusters to produce consequential behaviors.

In contrast, the hub scores of the clusters were not strongly related

to their outward synaptic weights. The cluster with the highest

outward weight ratio (cluster 11) was not the most prestigious hub

cluster, whereas the cluster with the highest hub score (cluster 21)

had equivalent degrees of in and out synapses. This result may

reflect the presence of indirect connections from the information-

producing cluster 11 to the information-receiving parts of various

clusters. In contrast, clusters 21 and 22, which exchange

connections with each other, are motor neuronal clusters with

direct synaptic connections (Figure 5C).

With respect to functional relevance, our topological analysis

provided a hierarchical model of the information flow among

structural clusters (Figure 5C). For example, the hierarchically

close clusters 11 and 12 were functionally associated with each

other for chemosensory behavior (navigation for food searching)

[39]. As noted, cluster 11 contained mostly chemosensory neurons

and 1st layer interneurons, while cluster 12 contained 2nd layer

interneurons and motor neurons responsible for head and neck

movement. This hierarchical relevance was also apparent between

clusters 21 and 22 for the behavior of anterior touch response.

Interestingly, our prediction of the information processing

procedure between the clusters agreed with the nodal-level

depiction of information processing hierarchy derived using a

Laplacian matrix analysis [31]. We computed the cluster-level

mean value of information processing hierarchy introduced by

Varshney et al. [31]. This measure describes a chain of

information producers and receivers in a one-dimensional axis

using information obtained from complex recursive structural

interactions between the neurons in the connectome. As a result,

information producers have a high level of parametric value and

receivers have a low level of parametric value. The average values

of this parameter for neurons belonging to each cluster were as

follows: cluster 11 (0.6560.55) . cluster 13 (0.1760.54) . cluster

12 (0.0360.37) . cluster 21 (0.0160.83).22 (20.7760.70). This

trend implies that the flow of information follows the path of

cluster 11 R 13 R 12 R 21 R22. Using the same measure of

information hierarchy, we found that motor neurons belonging to

cluster 21 were located in an earlier processing phase of the

information hierarchy than the motor neurons of cluster 22. The

mean value of this parameter for motor neurons of cluster 21 was

0.1560.66, whereas the mean value for the neurons belonging to

cluster 22 was 0.2360.67. The value of this parameter also tended

to grow as the location of a motor neuron moved posteriorly

(Figure S3), supporting our claim that posterior motor neurons are

located at an earlier stage of information processing than anterior

motor neurons. From the inward/outward synaptic ratios and the

directionality of information flow between clusters, it is plausible to

suggest that information flow among the structural clusters

identified in this study occurs as follows: (1) chemosensation: 11

R 12 R head movement for changing direction, 11R 12 R 21 R
22 R body movement; (2) mechanosensation: 21 R 22 R body

movement. To summarize, the structural clusters indentified in

this study appear to serve as a cohesive sub-module for

information processing at various stages.

Discussion

C. elegans is the only organism in which all synapses in the

nervous system have been anatomically elucidated. Numerous

studies have used this information to investigate how neuronal

connections are related to their functions. However, few attempts

have been made to identify structurally meaningful clusters by

considering the complete wiring diagram of synaptic connections

without any prior knowledge or other bias. Analysis of the C.

elegans connectome revealed the existence of 5 topological clusters,

Figure 5. The structural relationship between 5 hierarchical clusters. (A) The ratio of in and out synapses for each cluster toward other
clusters. (B) Hub and authority scores of each cluster. A cluster with a high hub score contains many outward synapses of high quality, whereas a
cluster with a high authority score has high-quality inward synapses. (C) Representation of the hierarchical relationship between the clusters with
their biological functions. The thickness of each edge and arrow is proportional to the synaptic weight between each dyad. The size of the circle
representing a cluster is proportional to the intra-cluster synaptic weight of the cluster. The numbers in parentheses indicate numbers of neurons.
doi:10.1371/journal.pcbi.1001139.g005
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including a body-spanning cluster, on the individual neuronal

level, each of which corresponds to experimentally identified

functional circuits. The hierarchical relationships between the five

clusters define the systemic cooperation (e.g., mechanosensation,

chemosensation, and navigation) between structurally segregated

biological circuits toward higher-order complex behaviors. This

study explicitly shows structural substrates of functional systems in

a micro-scale connectome, which may provide experimentalists

with possible predictions for functions of novel circuits in the C.

elegans connectome.

What is the significance of the existence of distinct structural

clusters in the C. elegans connectome? We show that the nervous

system of the nematode, though seemingly simple, is organized into

distinct functional modules. A ganglion contains neurons belonging

to distinct clusters, suggesting that a ganglion is a simple collection of

neurons with their somata lying near each other but also with

different functional roles. Thus, synaptic connections make a

greater contribution to the biological function of the C. elegans

connectome than does the physical location of neuronal cell bodies.

We found that each cluster identified through topological

clustering exhibited close relationships with its function in neural

circuits, supporting our speculation that clustering analysis would be

helpful in elucidating the functions of unidentified neurons.

Supporting this idea, previous findings of neuronal ablation

experiments are consistent with our clustering data. Most command

interneurons, except for AVE, are included in cluster 21 (Figure 4B).

Cluster 21 also contains the mechanosensory neurons ALM and

PLM (Figure 4B). If ALM and PLM neurons are ablated, the worms

do not respond to anterior and posterior body touch, respectively.

Cluster analysis suggests that the command interneurons contained in

cluster 21 are involved in mechanosensation. Consistent with this

conclusion, when AVD or PVC neurons were ablated, the worms

could not sense anterior or posterior body touch, respectively [40,42].

Among the command interneurons, only AVE neurons belonged to

cluster 12, which is consistent with the previous finding that ablation

of the AVE pair alone did not result in any locomotion defect [42]. It

is possible that, unlike other command interneurons, AVE neurons

are involved in connecting chemosensory signals to motor circuits.

Using computational output, it is possible to make important

predictions about the roles of neurons whose functions have not yet

been examined or elucidated. For example, because sensory

neurons in cluster 11 are experimentally known to be involved in

chemosensation while sensory neurons in cluster 12 are involved in

mechanosensation, we can hypothesize that unknown neurons, such

as ADA neurons in cluster 11 and IL2 neurons in cluster 12, may be

involved in chemosensation and mechanosensation, respectively.

These hypotheses can be experimentally examined. The approach

we employed in this study can be extended to other more complex

organisms and represents a strong methodology for determining the

functional properties of the connectome of other animals.

In addition, it will be feasible to test hypotheses based on our

information flow using optogenetic methods and neural imaging

[46]. For example, after expressing and activating channel

rhodopsin proteins in motor neurons belonging to cluster 21,

which are mostly located in the posterior region of the body, one

could examine whether neural information can be transmitted to

the neurons in cluster 22. This kind of approach may help to

dissect the mechanism of locomotion in more detail. Ablation

experiments could also be employed in addition to the inhibitory

method using halorhodopsin.

Our findings must be interpreted in light of the limitations of

this study. Because we lack knowledge on circuit-level information

processing in C. elegans neuronal function at present, further

validation based on biological experiments is necessary to confirm

our findings and to build detailed computational methods for

better predictions. Although we analyzed a recent version of the

connectome as a directed weighted network, derivation of a more

appropriate adjacency matrix of the connectome remains a goal

for future theoretical studies. Because the C. elegans connectome

contains distinct types of chemical synapses with excitatory or

inhibitory synaptic effects, the development of a plausible

framework for estimating the correct numbers for each element

of the adjacency matrix will be required.

Supporting Information

Figure S1 Weight distribution of the C. elegans connectome on

the log-log scale with power-law fitting [2]. The scaling exponent

of this distribution, a, is 2.72. This implies that the synaptic dyads

in the network possess very uneven connection weights.

Found at: doi:10.1371/journal.pcbi.1001139.s001 (0.06 MB TIF)

Figure S2 Neurotransmitter composition ratio for each cluster.

The data were collected from the worm atlas website (http://

www.wormatlas.org/neurons.htm/NTs.htm).

Found at: doi:10.1371/journal.pcbi.1001139.s002 (0.28 MB TIF)

Figure S3 Correlation between anterior to posterior motor

neuron index and the information hierarchy level parameter. The

location of a motor neuron gets close to posterior as the number in

the index of its label increases. We plotted the mean value of the

parameter value for each neuron group having a same number

index (ex. AS01, DA01, DV01, DD01, VA01, VB01, VC01 and

VD01). The figure illustrates the presence of positive correlation

between the two values (Pearson correlation = 0.3865) having a

slightly decreasing trend in the most anterior part of the worm.

Found at: doi:10.1371/journal.pcbi.1001139.s003 (0.12 MB TIF)

Figure S4 Fraction of poly-synaptic weights/chemical synaptic

weights minus the fraction in the overall network (0.55)

represented in the cluster to cluster connection matrix.

Found at: doi:10.1371/journal.pcbi.1001139.s004 (0.12 MB TIF)

Figure S5 Association between muscles and the clusters. (A)

Strength of attachment of each muscle to the clusters represented

by synaptic weight linked to the clusters. (B) Distribution of

diversity of linked clusters for each neuron measured using IQV.

Found at: doi:10.1371/journal.pcbi.1001139.s005 (0.15 MB TIF)

Figure S6 The complete community hierarchy of the 279

neurons.

Found at: doi:10.1371/journal.pcbi.1001139.s006 (0.12 MB TIF)

Table S1 The complete list of neuronal affiliation for each

cluster in the C. elegans connectome.

Found at: doi:10.1371/journal.pcbi.1001139.s007 (0.03 MB XLS)

Table S2 Classification of the neurons in the C. elegans

connectome by their topological roles.

Found at: doi:10.1371/journal.pcbi.1001139.s008 (0.04 MB XLS)

Table S3 Values of within-module weights Z and participation

coefficients P of each neuron in the C. elegans connectome with

basic statistical analysis.

Found at: doi:10.1371/journal.pcbi.1001139.s009 (0.04 MB XLS)

Table S4 Association between muscles and the clusters. The lists

of IQV values and dominant cluster association information of

each muscle.

Found at: doi:10.1371/journal.pcbi.1001139.s010 (0.03 MB XLS)

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1001139.s011 (0.07 MB

DOC)

Cluster Analysis of C. elegans Connectome

PLoS Computational Biology | www.ploscompbiol.org 9 May 2011 | Volume 7 | Issue 5 | e1001139



Acknowledgments

We thank Pan-Jun Kim, Peter J. Mucha, Mason A. Porter, Marta Sales-

Pardo, and the anonymous reviewers for helpful comments and Lav R.

Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B.

Chklovskii for making the C. elegans connectome data freely available.

Author Contributions

Conceived and designed the experiments: YS JL JJ. Performed the

experiments: YS. Analyzed the data: YS MKC JL JJ. Contributed

reagents/materials/analysis tools: YS. Wrote the paper: YS MKC YYA JL

JJ.

References

1. Passingham RE, Stephan KE, Rolf K (2002) The anatomical basis of functional
localization in the cortex. Nat Rev Neurosci 3: 606.

2. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,
development and function of complex brain networks. Trend Cogn Sci 8:

418–425.

3. White JG, Southgate E, Thomson JN, Brenner S (1986) The Structure of the
Nervous System of the Nematode Caenorhabditis elegans. Phil Trans R Soc

Lond B 314: 1–340.
4. Laughlin SB, Sejnowski TJ (2003) Communication in Neuronal Networks.

Science 301: 1870–1874.
5. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

6. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008)
Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159.

7. Kaiser M (2007) Brain architecture: a design for natural computation. Philos
Transact A Math Phys Eng Sci 365: 3033–3045.

8. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science. New

York: McGraw-Hill. pp 983–997.
9. Lichtman JW, Livet J, Sanes JR, Contact NPG (2008) A technicolour approach

to the connectome. Nat Rev Neurosci 9: 417–422.
10. Bota M, Swanson LW (2007) Online workbenches for neural network

connections. J Comp Neurol 500: 807–814.
11. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural

description of the human brain. PLoS Comput Biol 1: e42.

12. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of
communities in large networks. J Stat Mech: P10008.

13. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev
Mod Phys 74: 47–97.

14. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.

Nature 393: 440–442.
15. Reigl M, Alon U, Chklovskii DB (2004) Search for computational modules in the

C. elegans brain. BMC Biol 2: 25.
16. Kaiser M, Hilgetag CC, Friston K (2006) Nonoptimal component placement,

but short processing paths, due to long-distance projections in neural systems.
PLoS Comput Biol 2: 805–815.

17. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of

graph theoretical analysis to complex networks in the brain. Clin Neurophysiol
118: 2317–2331.

18. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,
low-frequency, small-world human brain functional network with highly

connected association cortical hubs. J Neurosci 26: 63–72.

19. Liu Y, Liang M, Zhou Y, He Y, Hao Y, et al. (2008) Disrupted small-world
networks in schizophrenia. Brain 131: 945–961.

20. Clauset A NM, Moore C (2004) Finding community structure in very large
networks. Phys Rev E 70: 066111–066113.

21. Guimera R, Amaral LAN (2005) Cartography of complex networks: modules

and universal roles. J Stat Mech; P02001.
22. Newman MEJ (2006) Finding community structure in networks using the

eigenvectors of matrices. Phys Rev E 74: 36104.
23. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing Modular

Architecture of Human Brain Structural Networks by Using Cortical Thickness
from MRI. Cereb Cortex 18: 2374–2381.

24. Felleman DJ, Van Essen DC (1991) Distributed Hierarchical Processing in the
Primate Cerebral Cortex. Cereb Cortex 1: 1–47.

25. Hilgetag CC, Kaiser M (2004) Clustered organization of cortical connectivity.
Neuroinformatics 2: 353–360.

26. de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C.

elegans. Annu Rev Neurosci 28: 451–501.
27. Leicht EA, Newman ME (2008) Community structure in directed networks.

Phys Rev Lett 100: 118703–118706.
28. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a

comparative analysis. Phys Rev E 80: 056117.
29. Good BH, de Montjoye YA, Clauset A, Campanelli M, Ral WM, et al. (2010)

The performance of modularity maximization in practical contexts. Phys Rev E

81: 046106.
30. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate

neuronal structure and function. Proc Natl Acad Sci U S A 103: 4723–4728.
31. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural

properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol

7: e1001066.
32. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The

architecture of complex weighted networks. Proc Natl Acad Sci U S A 101:
3747–3752.

33. Wood WB (1988) The nematode Caenorhabditis elegans. New York: Cold
Spring Harbor Laboratory Press. pp 22–124.

34. Karrer B, Levina E, Newman MEJ (2008) Robustness of community structure in

networks. Phys Rev E 77: 046111–046119.
35. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein

networks. Science 296: 910–913.
36. Perez-Escudero A, de Polavieja GG (2007) Optimally wired subnetwork

determines neuroanatomy of Caenorhabditis elegans. Proc Natl Acad Sci U S A

104: 17180–17185.
37. Gibbs JP, Poston DL (1975) The Division of Labor: Conceptualization of

Related Measures. Soc Forces 53: 468–476.
38. Hobert O (2003) Behavioral plasticity in C. elegans: paradigms, circuits, genes.

J Neurobiol 54: 203–223.
39. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis

elegans. Proc Natl Acad Sci U S A 102: 3184–3191.

40. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, et al. (1985) The
neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:

956–964.
41. Goodman MB (2006) Mechanosensation. WormBook, ed. The C. elegans Research

Community, WormBook, doi/10.1895/wormbook.1.62.1.

42. Wicks SR, Rankin CH (1995) Integration of mechanosensory stimuli in
Caenorhabditis elegans. J Neurosci 15: 2434–2444.

43. Hobert O, Moerman DG, Clark KA, Beckerle MC, Ruvkun G (1999) A
conserved LIM protein that affects muscular adherens junction integrity and

mechanosensory function in Caenorhabditis elegans. J Cell Biol 144: 45–57.

44. Bargmann CI (2006) Chemosensation in C. elegans. WormBook WormBook, ed.
The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.123.1.

45. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J Assoc
Comput Mach 46: 604–632.

46. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, et al. (2007) Multimodal
fast optical interrogation of neural circuitry. Nature 446: 633–639.

Cluster Analysis of C. elegans Connectome

PLoS Computational Biology | www.ploscompbiol.org 10 May 2011 | Volume 7 | Issue 5 | e1001139


