This page intentionally left blank.
A Note on the Microdistribution of the Red-backed Vole, *Clethrionomys gapperi*, in the E.N. Huyck Preserve, New York

CRAIG A. STEWART

Department of Biology, Indiana University, Bloomington, Indiana 47405

In a trapping study of small mammals on the E. N. Huyck Preserve (Rensselaerville, New York) it was found that *Clethrionomys gapperi* was captured only in the immediate vicinity of abandoned stone fences. *Peromyscus leucopus* were common throughout the study area. Captures of *P. leucopus* did not seem related to the presence or absence of abandoned stone fences. Thus, interspecific interactions seem unlikely to restrict *C. gapperi* to the areas near abandoned stone fences. The latter may provide essential nesting habitat or protection from predators for Red-backed Voles.

Key Words: Red-backed Vole, *Clethrionomys gapperi*, microdistribution, stone fences, New York.

The Red-backed Vole, *Clethrionomys gapperi*, is a small woodland rodent found in the Northern United States and Canada. Getz (1968) and Miller and Getz (1972, 1973) reported that the microdistribution of this species is influenced by many factors: water availability, vegetation, and interspecific interactions with other small mammal species.

This note reports the results of a trapping study of small mammals which yielded data on the local distribution of *C. gapperi* in relation to the White-footed Mouse, *Peromyscus leucopus*.

Small mammals were trapped on the E. N. Huyck Preserve, located in the Adirondacks region of New York (in Rensselaerville) between 17 October 1982. Museum Special traps were spaced approximately 10 m apart on lines run in several predominantly second-growth deciduous woodland areas of the Reserve. Some of the areas contain abandoned stone fences left from early attempts to cultivate the area.

Traps were baited with peanut butter and oatmeal, and were checked at least three times per day. The trapping procedures complied with the methods approved by the American Society of Mammalogists (Ad hoc Committee on Acceptable Field Methods in Mammalogy 1987). The characteristics of each trap station (including type of trees located nearby, presence of stumps, and presence of abandoned stone fences) were recorded to allow for analysis of small mammal microdistribution.

Eighty-nine *P. leucopus*, 12 *C. gapperi*, five shrews, *Blarina brevicauda*, and three deer mice, *Peromyscus maniculatus*, were captured in a total of 879 trap nights. Ten of the 12 *C. gapperi* captured were trapped within one meter, and two within two meters, of an abandoned stone fence. The relationship between capture of *C. gapperi* and the presence of a stone fence within one meter of the trap site was statistically significant (p < 0.01, Chi-square test). In contrast, capture of *P. leucopus* was not statistically significantly related to the presence of a stone fence. Traps within one meter of a stone fence accounted for slightly more than 10% of the trap nights. These trap stations were found in a variety of different habitats. Other factors, such as the type of trees near trapping sites, did not have any discernible influence on the capture of either species.

Stone fences have been noted previously as one of several preferred microhabitats of *C. gapperi* (Miller and Getz 1972, 1973). However, in my study area, *C. gapperi* was found only in the immediate vicinity of abandoned stone fences. Since the presence or absence of a stone fence near a trapping site did not affect the chances of capturing *P. leucopus*, it seems unlikely that interspecific interactions were responsible for restricting *C. gapperi* to the vicinity of the stone fences. Instead, the latter may provide essential nesting habitat or protection from predators for the Red-backed Voles.

Acknowledgments

I thank Robert C. Dalgleish and Deborah Melville Gordon whose hospitality at the Huyck Preserve was most gracious. This study was...
supported, in part, by a grant from the Indiana
Academy of Science.

Literature Cited

Ad Hoc Committee on Acceptable Field Methods in
Mammalogy. 1987. Acceptable field methods in
mammalogy: Preliminary guidelines approved by the
American Society of Mammalogists. Journal of
Mammalogy 68: Supplement. 17 pages.

Getz, L. L. 1968. Influence of water balance and
microclimate on the local distribution of the redback

Miller, D. H., and L. L. Getz. 1972. Factors influence-
ing the local distribution of the redback vole,
Clethrionomys gapperi, in New England. Occasional
Papers, University of Connecticut, Biological Sciences

ing the local distribution of the redback vole,
Clethrionomys gapperi, in New England. II.
Vegetation cover, soil moisture, and debris cover.
Occasional Papers, University of Connecticut,
Biological Sciences Series 2: 159–180.
Received 9 November 1988
Accepted 19 July 1990

Habitat Use by Snowshoe Hares, Lepus americanus,
in Relation to Pelage Color

JOHN A. LITVAITIS

Wildlife Program, Department of Natural Resources, University of New Hampshire, Durham, New Hampshire
03824.

Habitat use by Snowshoe Hares (Lepus americanus) was examined in relation to pelage color during vernal and
autumnal molting periods. During periods with no snow, mottled and white hares (≥ 75% brown pelage) occupied
sites with more understory cover than brown hares in two of six comparisons. Age and sex-related differences in
habitat use did not explain these differences. Because the combined length of the vernal and autumnal molting periods
is approximately 140 days, an ability of hares to occupy habitat in response to pelage color differences may have
implications to predator avoidance and survival.

Key Words: Snowshoe Hare, Lepus americanus, habitat use, Maine, molt, pelage.

Like several other boreal vertebrates, Snowshoe
Hares (Lepus americanus) undergo vernal and
autumnal molts that result in predominantly
brown and white pelages, respectively. Because of
these molts, a Snowshoe Hare generally blends
with the prevailing tone of its environment in any
season. However, during the molting period, a
population of hares includes members that are
brown, mottled, or white (Grange 1932; Severaid
1942). I compared pelage color of hares to habitat
features at capture sites during spring and autumn
molting periods to determine if habitat use varied
with pelage color.

Study Area and Methods

Habitat use of hares was studied in eastern
(Cherryfield, 44° 35’N, 67° 55’W) and western
(Pierce Pond, 45° 15’N, 70° 10’W) Maine, during
1981–1983. Cherryfield was located in coastal
Maine and overstory vegetation of this area was
predominantly hardwoods, including Red Maple
(Acer rubrum), Gray and Paper birch (Betula
populifolia, b. papyrifera), and aspen (Populus
tremuloides, P. grandidentata). Understory
vegetation included Canadian Rhododendron
(Rhododendron canadense), alder (Alnus spp.),
and willow (Salix spp.). Pierce Pond was located
approximately 190 km west of Cherryfield in the
mountainous portion of Maine. Dominant
overstory species included Red Spruce (Picea
rubens), Balsam Fir (Abies balsamea), Paper
Birch, and Yellow Birch (B. alleghaniensis).

Extensive logging in this area resulted in dense
stands of regenerating spruce and fir. Single-door
box traps (90 × 30 × 30 cm) were placed at 100-m
intervals in a 7 × 7 grid on two sites in each study
area (Cherryfield: Lawrence Creek, Pork Brook;
Pierce Pond: Alder Road, Otter Pond). Grids
within each study area were separated by at least
6 km, preventing hares from occupying more than
one sampling grid. Traps were baited with alfalfa
pellets and set for 8–15 days during spring (April–
May) and autumn (October–November). At the
initial capture, each hare was marked with unique