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Leonid Isaev

COLLECTIVE PHENOMENA IN STRONGLY CORRELATED FRUSTRATED

QUANTUM SYSTEMS

We study the role of lattice frustration, competing interactions and quantum fluc-

tuations in stabilizing non-trivial states of matter in strongly correlated systems. Our

analysis focuses on three types of physical phenomena: magnetism in Mott insulators,

superconductivity in repulsive fermion systems and multiferroicity in complex oxides.

In the context of frustrated magnets, we propose a real-space mean-field frame-

work, which combines exact diagonalization in finite clusters and variational calcula-

tion of the state of an infinite system, thus capturing local correlations and providing

a controlled and unbiased approximation scheme. This method is applied to several

models of quantum magnetism, such as the square-lattice Heisenberg antiferromag-

net with competing first and second neighbor exchange interactions. Using a single

variational ansatz for the ground state, we compute the zero-temperature phase di-

agram of this model, which includes a quantum paramagnetic state. We show that

this state has a correlated plaquette nature and breaks translational invariance, but

preserves lattice point-group symmetries. Next, we study the phenomenon of magne-

tization plateaux in the orthogonal dimer compound SrCu2

(

BO3

)

2
, described by the

Shastry-Sutherland model. We demonstrate that plateaux are stabilized in certain

spin patterns, satisfying local commensurability conditions, which we also derive.

Lattice frustration usually hinders the existence of a long-range order. However,

in some cases frustration can be beneficial for stabilizing an ordered state, even in a

strongly interacting system. We illustrate this mechanism, by considering the Hub-

bard model with modulated electron hoppings. Within a controlled approximation,

we demonstrate how magnetic fluctuations lead to a d-wave superconducting state for

arbitrarily strong fermion repulsion. We also discuss the possibility to observe this
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phenomenon in cold atom experiments.

Another class of systems, where frustration and quantum fluctuations serve as pre-

requisites for a complex ordered state, are multiferroics with ferroelectricity due to

charge ordering. Using the rare-earth oxide LuFe2O4 as an example, we present a the-

ory of multiferroic behavior, caused by the lattice frustration and order-from-disorder

physics. Using this theory we explicitly demonstrate that the double exchange mech-

anism leads to a significant coupling between electric and magnetic orders.

G. Ortiz, Ph.D. W. M. Snow, Ph.D.

H. Fertig, Ph.D. P. Sokol, Ph.D.
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tte crystal phases, as well as symmetries of various phases, are based

upon extrapolation of our results towards the thermodynamic limit.

(b) Symmetric covering of the 2D lattice with 2 × 2 plaquettes. Each

plaquette is connected to 4 nearest and 4 next-nearest neighbors. . . . 29

2.2 Different tesselations and clusters used in the HMF calculation. Left:

displaced plaquette covering. Notice that the C4 symmetry is broken

down to C2. Center: Connectivity of the dimer lattice for displaced

(left) and symmetric (right) dimer coverings. The rotational C4 sym-

metry is lowered to C2 in both cases. Right: Covering of the lattice

with crosses – arrays of five spins. Since one cross cannot form a sin-

glet, it is necessary to double the unit cell, as indicated by the gray

shading. This choice of a degree of freedom clearly preserves the C4

symmetry, but the resulting lattice breaks it. . . . . . . . . . . . . . . 34

xi



2.3 (a) Ground state energy per spin computed at the HF level for the

2 × 2 and 4 × 4 plaquette elementary degrees of freedom. The inset

shows finite-size scaling in the AF phase at J2 = 0. (b) Second-order

derivative d2E0/dJ
2
2 for the 2 × 2 and 4 × 4 plaquette degrees of free-

dom. The discontinuity at J2/J1 ≈ 0.42 is indicative of a second-order

quantum phase transition. In the inset we present finite-size scaling

for the jump g ≡ (J1d
2E0/NdJ

2
2 )

Jc1
2 +0

Jc1
2 −0

. . . . . . . . . . . . . . . . . . 36

2.4 (a) Staggered magnetization, Mstag, for J2 ≤ Jc1
2 and columnar mag-

netization along the x-direction, Mcol(x), for J2 ≥ Jc2
2 (for the 2 × 2

and 4 × 4 plaquette degrees of freedom), computed at the HF level.

Notice the continuous phase transition at J2/J1 ≈ 0.42 and a first-

order transition at J2/J1 ≈ 0.68 (2× 2) and J2/J1 ≈ 0.66 (4× 4). The

inset shows finite-size scaling of Mstag at J2 = 0. (b) HF ground state

expectation values of the symmetry-breaking perturbations, given by

Eq. (2.9), plotted as functions of J2/J1 for the plaquette and super-

plaquette degrees of freedom. Due to the C4 symmetry in the Néel
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Chapter 1

Introduction

One of main challenges of modern condensed matter physics is the characterization of

strongly correlated quantum matter, where interactions between degrees of freedom,

such as individual electrons or localized magnetic moments, is dominant compared

to single-particle energy scales, like the bandwidth or single-ion anisotropy. Con-

trary to their classical counterparts, the ground state in these systems is determined

by quantum fluctuations, which are the manifetation of the Heisenberg uncertainty

principle. As a result, one is usually confronted with a variety of exotic phases and

non-perturbative behavior, which cannot be described in terms of non-interacting

entities.

Low-temperature and condensed matter examples include high-Tc superconduc-

tors, frustrated magnetic insulators, heavy-fermion materials, complex oxides, liquid

helium mixtures, etc. The state of these systems and their response to external

probes are determined by an interplay of quantum orders, such as superconductivity,

Bose-Einstein condensation and various ferroic orders. As a result rich phase dia-

grams emerge, comprised of many different states of matter, when a certain control

parameter is varied. For instance, it is well-known that high-Tc materials, such as

La1−xSrxCuO4, are antiferromagnetic at small composition x and superconducting for

1



x ∼ 0.1.

Such complex behavior, on the one hand, opens a door for technological appli-

cations. For example, high-Tc materials are extensively used in magnetic sensing

(SQUIDs), in accelerometer magnets and even in cell phone towers. Multiferroics,

characterized by a strong magneto-electric coupling, are usually proposed as a next-

generation RAM devices. On the other hand, this complexity challenges our under-

standing of basic principles of Nature. It is the presence of non-linear couplings and

competing quantum orders, what significantly complicates theoretical description of

the strongly correlated systems, simply because there is usually no obvious ground

state which one could take as a starting point and build an expansion around. In

order to advance our theoretical understanding of strongly correlated systems, new

non-perturbative methods and simple (yet illustrative) models have to be developed.

These observations serve as a general motivation for our work. In the following

chapters we are going to describe our research in several closely related areas, includ-

ing quantum phase transitions (i.e. phase transitions which occur at zero temperature

as a function of some parameters of the Hamiltonian) in frustrated magnetic insula-

tors, superconductivity in strongly repulsive fermionic systems, and mangeto-electric

coupling in charge-frustrated multiferroic materials.

The key theoretical concepts of strong correlations, frustration and the quantum

order-from-disorder mechanism, which will pervade the work, are summarized in the

following sections. We shall also briefly present basic ideas of the theory of superflu-

idity in a repulsive Fermi gas at T = 0. This chapter concludes with a “roadmap” of

research directions, which were worked out during the completion of this work, and

a summary of results.
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1.1 Basic theoretical concepts

1.1.1 Electronic origin of magnetism: Mott physics

In its simplest form the Hubbard model describes a single band of electrons propa-

gating in the crystal and interacting via screened (i.e. short-range) Coulomb forces.

It was originally proposed as a minimal model of narrow-band magnetic conductors,

where the same electronic degree of freedom is responsible for both charge and spin–

related phenomena [1, 2, 3]. Physically this model is relevant for describing transition

metals and transition metal oxides, which include magnetic and non-magnetic Mott

insulators, as well as high-Tc superconductors. Transition elements occupy several

rows in the periodic table and include Cr, Ni, Fe and Cu. Properties of these ele-

ments and materials based on them are mainly determined by the electrons living in

the 3d orbital.

Let us consider a simple crystal having one atom per unit cell and one delocalized

electron band. In second quantization, the Hamiltonian which describes a system of

electrons moving in this lattice and interacting with each other via Coulomb forces

is given by [4]:

H =

∫

dx
∑

σ

ψ†σ(x)

(

p̂2

2m
+ V (x)

)

ψσ(x)+

+
1

2

∫

dx1dx2

∑

σ1σ2

ψ†σ1
(x1)ψ

†
σ2
(x2)

e2

|x1 − x2|
ψσ2

(x2)ψσ1
(x1), (1.1)

where p = −i∇ is the momentum operator, e and m is the electron charge and mass,

σ =↑, ↓ is the electron spin projection, dx is the volume element, V (x) is the periodic

potential of the crystal lattice, and we also adopt the units ~ = 1. The fermion field

operator [4] ψσ(x) satisfies the usual anticommutation relation:

{

ψσ1
(x1), ψ

†
σ2
(x2)

}

= δσ1σ2
δ(x1 − x2).
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An essential property of the 3d orbital is its strong localization around the ion

core. This fact allows us to treat the dynamics of electrons within the tight-binding

approximation [5]. The fermion field operator can be expanded in terms of the lowest

energy Wannier orbitals [6]:

ψσ(x) =
∑

i

φ0(x− xi)ciσ,

where φ0(x−xi) is the ground-state Wannier function, centered around an atom with

coordinate xi ≡ i. Anticommutation relations for the fermion amplitudes ciσ follow

from those for ψσ(x):
{

ciσ, c
†
jσ′

}

= δijδσσ′ .

In terms of the c-operators the original Hamiltonian can be written as:

T = −t
∑

〈ij〉,σ

(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓. (1.2)

Derivation of this expression involves several approximations: (i) The summation in

the first term extends only over nearest-neighbor links 〈ij〉 (see panel (a) in Fig. 1.1).

This assumption is justified by the localized nature of the Wannier orbitals. The

quantity t, called the hopping amplitude, is defined as:

t = − 1

N

∑

k

e−ik(xi−xj)ǫ0(k),

where N is the number of atoms, the sum goes over the Brillouin zone, and ǫ0(k) is

the dispersion relation in the lowest band. The last equation is easy to obtain, if one

recalls the definition of the Wannier functions in terms of the Bloch states ϕnk:

φn(x− xi) =
1√
N

∑

k

e−ikxiϕnk(x).
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(ii) The long-range part of the Coulomb interaction is assumed to be screened [1],

so that only the on-site repulsion remains. This local interaction is described by

the second term in Eq. (1.2), with U being the corresponding interaction strength.

Eq. (1.2) is known as the Hubbard model. Its basic physical picture lays in the

competition between the local repulsion U , which tends to localize electrons, and the

kinetic energy t (quantum fluctuations).

A lot of effort was dedicated to studying this competition in condensed matter

[6, 7] and cold atoms [8]. Here we only consider a conceptually important situation,

when the on-site Coulomb repulsion U is large compared to the bandwidth t, and

the number of electrons equals the number of lattice sites N (the half-filled case;

remember that the maximum number of electrons which can be accomodated is 2N).

In the zeroth approximation the kinetic energy term in (1.2) can be ignored.

The resulting classical model has an obvious ground state with one electron per

lattice site and 2N -fold spin degeneracy. Any excited state has at least one doubly

occupied site, and is separated by the gap ∆E > U from the ground state manifold.

The macroscopic ground state degeneracy is partially lifted by quantum fluctuations

via the second order (∼ t2/U) processes, shown in panel (b) of Fig. 1.1. This

fluctuation channel is open only if in the initial and final states the two electrons have

opposite spin projections. When electrons have parallel spins, the doubly occupied

intermediate state is prohibited by the Pauli principle.

Using the second-order degenerate perturbation theory, one can show [6] that the

low-energy effective Hamiltonian involves only spin degrees of freedom and has the

Heisenberg–Dirac form:

Hef = J
∑

〈ij〉

(

SiSj −
1

4

)

, (1.3)

where J = 4t2/U > 0 is the exchange interaction and Si =
1
2
c†iασαβciβ are electron
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t

t t

1/U

t2

U
Sz
i
Sz
j

t2

U
S−
i
S+
j

i j
〈ij〉

t

U

(a) (b) (c)

Figure 1.1: (a) Energy scales and site notations in the Hubbard model (1.2). (b)
Virtual processes which lead to the Heisenberg model. An initial state (on the top),
can transform into itself, leading to the Ising terms ∼ Sz

i Z
z
j in (1.3); or have its spins

interchanged. The latter process gives the XY terms Sx
i S

x
j +Sy

i S
y
j = 1

2

(

S+
i S
−
j +h.c.

)

with S±i = Sx
i ± Sy

i .

spin-1
2
operators with σαβ being the Pauli matrices 1.

The model of Eq. (1.3), known as the Heisenberg model, represents one of the

most fundamental approximations in condensed matter physics. It is usually used to

describe magnetic insulators, e.g. undoped high-Tc materials. Note that so far we

made no assumptions regarding the lattice on which the Hamiltonians (1.2) and (1.3)

are defined. In the simplest case of a square lattice, the Heisenberg model has an

antiferromagnetically (long-range) ordered Néel ground state [9], shown in panel (c)

of Fig. 1.1. However, as we shall discuss in Sec. 1.1.2, the lattice topology has a

profound effect on the variety of phases exhibited by the Heisenberg model.

The above discussion demonstrates that low-energy properties of the large-U Hub-

bard model at half-filling are mainly determined by the spin degree of freedom, at

least in non-frustrated lattices2. The charge is completely “locked”, i.e. there is a gap

1Recall their canonical form:

σx =

(

0 1
1 0

)

; σy =

(

0 −i
i 0

)

; σz =

(

1 0
0 −1

)

.

2For peculiar charge effects associated with lattice frustration see [10].
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∼ U to charge excitations. Thus, the system is an insulator, not because of a band

gap (in fact, according to the usual theory of solids, the system should be metallic),

but rather due to electron correlations. Such materials were termed Mott insulators,

as opposed to non-interacting band insulators.

For densities slightly below half-filling the system is a “diluted antiferromagnet”,

with positively charged holes propagating in the antiferromagnetic background. This

background is usually believed to lead to an attractive interaction between holes [11],

which is why the two-dimensional Hubbard model is commonly considered a minimal

model for high-Tc copper oxides. However, these arguments were later found to be

misleading [12]. Thus, the question of whether or not the Hubbard model (1.2) can

support a superconducting phase remains open. We shall return to this problem in

Chap. 3.

1.1.2 Frustration and the order-from-disorder mechanism

The Hamiltonian of a lattice spin system is usually represented a sum of local interac-

tion terms, e.g. links. In general, we say that such system is frustrated, if its ground

state (GS) wavefunction does not simultaneously minimize all local spin interactions

in the Hamiltonian. A ubiquitous consequence of the frustration is degeneracy of the

classical GS of a spin system. Out of this GS manifold, quantum or thermal fluctu-

ations will often select a particular state, which is unique up to trivial degeneracies,

associated with global spin or spatial symmetry transformations. This mechanism,

called “order-from-disorder”, is one of the most fundamental concepts of condensed

matter physics.

Examples of non-frustrated systems include the antiferromagnetic (AF) nearest-

heighbor (NN) Heisenberg model (1.3), defined on a bipartite lattice, such as square,

honeycomb (panel (a) in Fig. 1.2) or simple cubic, and the ferromagnetic Heisenberg

model on any lattice. In the first case a Néel–like state always minimizes interaction
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(a)

(b)

(c)

J1 J2

Figure 1.2: Examples of non-frustrated and frustrated lattices. Solid (dotted) lines
denote (next-) nearest neighbor antiferromagnetic exchange couplings. (a) Non-
frustrated bipartite lattices: square and honeycomb. (b) Two possible 120◦ classical
ground states on a frustrated triangular lattice. (c) Interactions in the square-lattice
J1-J2 model (1.4).

energy between every pair of spins. In the ferromagnetic case a configuration with

all spins parallel is a unique exact GS. On the other hand, if the lattice contains

elementary triangles – a situation realized by triangular, FCC and HCP lattices – one

can not find a classical spin configuration which satisfies every link in the Heisenberg

model. In Fig. 1.2 panel (b) we show two possible 120◦ GS’s of the AF Heisenberg

model with NN interactions on a triangular lattice.

Another situation when a spin system can be frustrated is realized if the Hamil-

tonian involves different kinds of conflicting interactions, and the GS does not corre-

spond to a minimimum of either kind of interaction. A typical example of a magnet

with frustrating couplings is the so-called J1-J2 model, defined on a square lattice and

represented by the Heisenberg Hamiltonian, which in addition to NN AF interactions

(J1) also includes frustrating next-NN AF exchange couplings (J2), see panel (c) in

Fig. 1.2. In the rest of the section, we shall use this model to illustrate the effects of

8



frustration and the order-from-disorder physics. An interested reader is referred to

the review [13] for a detailed discussion.

The J1-J2 Hamiltonian has the form:

H = J1
∑

〈i,j〉
SiSj + J2

∑

〈〈i,j〉〉
SiSj , (1.4)

where i, j = 1 . . . N enumerate lattice sites, the symbol 〈〈i, j〉〉 denotes next-NN

links (Fig. 1.2, panel (c)), J1,2 > 0, and Si describes the localized spin-1/2 degree

of freedom. In order to determine possible classical GS’s we follow the method of

Luttinger and Tisza [14], which amounts to minimizing the Fourier transform J(k)

of the exchange interaction as a funtion of k. In the momentum representation we

have:

Si =
1√
N

∑

k

eikxiSk

and

H =
∑

k

J(k)|Sk|2,

where S−k = S∗k, because of the reality of the vector Si. The function J(k) is defined

as:

J(k) = 2
[

J1
(

cos kx + cos ky
)

+ J2 cos kx cos ky
]

.

Minimization of this function yields the “phase diagram” shown in Fig. 1.3. Depend-

ing on the value of J2/J1 there exist two distinct phases, separated by a 1st order

phase transition (level crossing): (i) For J2/J1 < 1/2, J(k) has a single minimum at

k = (π, π), which corresponds to the usual Néel state. (ii) When J2/J1 > 1/2, there

exist two equivalent degenerate minima at k = (0, π) and k = (π, 0). In the latter

case one has the so-called columnar spin structure, which consists of ferromagnetic

lines (columns), arranged antiferromagnetically. We can also visualize this order as

two AF sublattices with the unit cell
√
2×

√
2, shifted relative to each other by one
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J2/J1

Néel Columnar

1/2
1st order

Figure 1.3: Classical phase diagram of the J1-J2 model. Arrows indicate spin structure
in each phase. The two phases are separated by a first-order (discontinuous) phase
transition at J2 = J1/2.

lattice constant. Classical GS energies per spin in the two phases are given by:

E

N
= −2S2 ×

{

J1 − J2, J2 < J1/2;

J2, J2 > J1/2,

where S = 1/2 is the length of the classical spin vector. The two branches of E(J2/J1)

intersect when J2 = J1/2, which gives the 1st order phase transition point.

In case (i) the GS has only trivial degeneracies, associated with π/4 rotations

and space inversion. Case (ii), however, is much more interesting. We observe that

the GS has a continuous degeneracy, associated with a relative rotation of the two

AF sublattices by a twist angle φ, as depicted in the left panel of Fig. 1.4. General

arguments [15, 16] indicate that this classical degeneracy is lifted by quantum fluctu-

ations (order-from-disorder), and a collinear (i.e. columnar) order with φ = 0 or π is

selected. In order to see this, one has to perform a spin-wave expansion around the

classical GS with a particular value of the twist angle, and minimize the quantum

zero-point energy as a function of φ [17, 18].
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The goal is most easily achieved by writing equations of motion for spin operators

[19]

Ṡi = i
(

HSi − SiH
)

=
∑

a=1,2

Ja

(

∑

δa

[

Si+δa × Si

]

)

,

where Ṡi = dSi/dt and δ1 (δ2) denotes four NN (next-NN) positions for a given site i.

In the notations of Fig. 1.4, they are given by: δ1 =
{

±ex, ±ez

}

and δ2 =
{

±ex±ez

}

.

Next we separate the fluctuating part of a spin operator by writing

Si =
〈

Si

〉

+ si,

where
〈

Si

〉

is the classical solution,

〈

Si

〉

=
S

2

{

sinφ(cosπzi − cosπxi)ex +
[

(1 + cosφ) cosπzi + (1− cosφ) cosπxi
]

ez

}

.

Linearization of equations of motion with respect to si, yields the magnon dispersion

relation:

ωk(φ) =4J2S

[

λ

2

(

cos kx + cos kz
)

+ 1 + cos kx cos kz

]1/2

×

×
[

λ

2
cosφ

(

cos kx − cos kz
)

+ 1− cos kx cos kz

]1/2

,

where λ = J1/J2. We note that there is only one branch in the magnon spectrum,

because k belongs to the large Brillouin zone. The zero-point energy is given by the

usual expression:

Efl(φ) =
1

2

∑

k

ωk(φ).

In the right panel of Fig. 1.4 we plot ǫ(φ) = Efl(φ)/2J2SN for several values of λ,

approaching the transition point from inside the columnar phase. We see that ǫ(φ)

indeed has two minima, at φ = 0 and π, corresponding to the collinear spin alignment

with ferromagnetic chains running along x and z axis, respectively.
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x
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 0.37

 0.372

 0.374

 0.376

 0.378

0 π/2 π

λ=0.5
λ=0.7
λ=1.0

φ

ǫ(
φ
)

Figure 1.4: Left panel: A classical spin configuration for an arbitrary twist angle φ
in the columnar phase J2 > J1/2 of the J1-J2 model (1.4). Right panel: Normalized
zero-point energy, ǫ(φ) = Efl(φ)/2J2SN as a function of the twist angle for several
values of the dimensionless coupling λ = J1/J2.

Finally, we note that exactly at the point J2 = J1/2 the GS is macroscopically

degenerate, because the Hamiltonian (1.4) can be rewritten as:

H = const. +
J1
2

∑

�

S2
�,

where the sum runs over plaquettes of the square lattice with S� being the total spin

of a plaquette. Thus, the classical energy is minimized, when each plaquette has a

vanishing total spin. The classical GS is, therefore, highly degenerate. At this point

the spin-wave expansion breaks down [17, 20], which is a strong evidence of existence

of a quantum disordered (paramagnetic) phase in this region of the parameter space.

We shall consider this question more closely in Chap. 2.

1.1.3 Superconductivity in repulsive fermion systems

The phenomenon of superconductivity (SC), or superfluidity in neutral fermion sys-

tems, is usually associated with some kind of an effective attractive interaction be-

tween the fermions. For instance, in such “conventional” superconductors as Al, Pb
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or Cd, the electron attraction is caused by electron-phonon interaction. Another cru-

cial requirement for SC is the sharpness of the Fermi surface. As shown by Cooper

[21], the Fermi sea is unstable against an arbitrarily weak attraction V ≪ εF acting

between particles at the Fermi surface. It is well known from quantum mechanics that

in two dimensions a weak attractive potential always has an exponentially shallow

bound state [4]. Similarly, the origin of the Cooper effect is the finite density of states,

gF , at the Fermi level; the bound state energy, also known as the superconducting

gap, is given by ∆ ∼ e1/V gF . The ground state of a superconductor is a “condensate”

of paired fermions, or Cooper pairs. Superfluidity in He3 and high-temperature SC

present a significant puzzle, since there is no obvious attraction mechanism between

the fermions. Thus, superfluidity in repulsive Fermi systems is still an actively devel-

oped subject in condensed matter physics. In this section we will set up basic notions

of the usual Bardeen-Cooper-Schrieffer (BCS) theory of SC [19, 22], and discuss the

Kohn-Luttinger mechanism [23] of SC in weakly repulsive systems.

Let us consider a system of fermions of mass m, interacting via some two-body

potential V (x1 − x2), see Eq. (1.1). The Heisenberg equation of motion for the field

operator ψα(t,x), has the form [19]:

i
∂ψα(t,x)

∂t
=

(

p̂2

2m
− µ

)

ψα(t,x) +

∫

dyV (x− y)ψ†β(t,y)ψβ(t,y)ψα(t,x),

where µ is the chemical potential, and we assume summation over doubly repeated

spin indices α, β, etc. At zero temperature µ is just the Fermi energy εF , and we

shall use the notations

ξp = p2/2m− µ ≈ vF
(

p− pF
)

; gF = mpF/π
2,

where pF is the Fermi momentum, vF = pF/m, and gF is the density of state at the

Fermi level mentioned above.
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Next we define the single-particle time-ordered Green’s function [19]:

Gαβ(t1x1, t2x2) = −i
〈

Tψα(t,x1)ψ
†
β(t2,x2)

〉

=

= −i
[

θ(t1 − t2)
〈

ψα(t1,x1)ψ
†
β(t2,x2)

〉

− θ(t2 − t1)
〈

ψ†β(t2,x2)ψα(t1,x1)
〉]

,

where the average is taken in the ground state, and θ(x) is the Heaviside step function:

θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0. This correlator allows us to compute

single-particle observables for a normal system. In order to describe properties of a

superconductor, one has to introduce the anomalous (Gorkov’s) Green function:

Fαβ(t1x1, t2x2) = −i
〈

Tψα(t,x1)ψβ(t2,x2)
〉

and its conjugate F †αβ . These expectation values are defined only in the thermody-

namic limit, because they violate particle number conservation. It is breaking of this

U(1) symmetry which distinguishes the superconducting state from the normal phase.

Equations of motion for G and F † follow from those for ψ and ψ†:

(

i
∂

∂t
− p̂

2m
+µ

)

Gαβ(x− x′) = δαβδ(x− x′)+

+ i

∫

dyV (x− y)
〈

Tψα(x)ψγ(y)ψ
†
γ(y)ψ

†
β(x
′)
〉

;
(

i
∂

∂t
+

p̂

2m
−µ

)

F †αβ(x− x′) =

= i

∫

dyV (x− y)
〈

Tψ†α(x)ψ
†
γ(y)ψγ(y)ψ

†
β(x
′)
〉

,

where we used the notations x = (t,x), y = (t,y) and the fact that in a translationally

invariant system all averages depend only on the difference x− y, but not on x and y

separately. The essence of the BCS approximation is a mean-field decoupling3 of the

3If there is a product of two operators A and B, then the mean-field approximation will amount
to writing

AB = 〈A〉〈B〉 + 〈A〉B + 〈B〉A+
(

A− 〈A〉
)(

B − 〈B〉
)
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quartic averages in these equations. Neglecting the usual Hartree and Fock terms,

which only modify the value of µ, we have [19]:

〈

Tψα(x)ψγ(y)ψ
†
γ(y)ψ

†
β(x
′)
〉

→
〈

Tψα(x)ψγ(y)
〉〈

Tψ†γ(y)ψ
†
β(x
′)
〉

=

= −Fαγ(x− y)F †γβ(y − x′);

〈

Tψ†α(x)ψ
†
γ(y)ψγ(y)ψ

†
β(x
′)
〉

→
〈

Tψγ(y)ψ
†
β(x
′)
〉〈

Tψ†α(x)ψ
†
γ(y)

〉

=

= −Gγβ(y − x′)F †αγ(x− y).

The equations of motion linearized in this way are most conveniently written in

momentum space4:

(

ω − ξp
)

Gαβ(ω,p) + ∆αγ(p)F
†
γβ(ω,p) =δαβ ;

∆†αγ(p)Gγβ(ω,p) +
(

ω + ξp
)

F †αβ(ω,p) =0.

Here we introduced the BCS gap function:

∆αβ(p) = i

∫

dωdq

(2π)4
V (p− q)Fαβ(ω, q),

which plays a central role in the entire SC theory. This function satisfies the self-

consistent BCS equation [22]:

∆αβ(p) = −
∫

dq

(2π)4
V (p− q)

∆αβ(q)

2E(q)
,

and neglecting the terms in parentheses. For correlation functions this approximation implies that
〈AB〉 → 〈A〉〈B〉.

4We define the Fourier transform of a function D(x) as

D(x) =

∫

dωdq

(2π)4
e−iωt+iqxD(ω, q).
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where the quantity

E(p) =
√

ξ2p + |∆p|2; with |∆p|2 =
1

2
Tr∆†(p)∆(p)

gives the spectrum of single-particle excitations.

The tensor structure of ∆αβ depends on the total spin S of the Cooper pair [24].

For example, for S = 0: ∆αβ(k) = ∆(k)iσy
αβ . Since the the Cooper pair wavefunction

must be antisymmetric under the interchange of the electrons, spin singlet states

correspond to pairing with an even angular momentum l, e.g. s-wave, d-wave, etc,

and spin triplets (states with S = 1) can only have an odd l-value: p, f , . . . Below

we only consider the case of the singlet pairing, for simplicity.

Due to the isotropy of space the Fermi surface is a sphere. Since the relevant

physics takes place in the vicinity of the Fermi level, we can assume that p = pFn with

n =
(

sin θ cosφ, sin θ sinφ, cos θ
)

. All quantities depend only on angular variables,

and can be expanded in spherical harmonics:

∆(p) =
∑

lm

∆lmYlm(n); V (p− q) =
∑

lm

VlY
∗
lm(np)Ylm(nq).

Because of exponential smallness of ∆ compared to V , one can neglect the coupling

of ∆lm with different l in the BCS equation [25]. The BCS equation itself can now

be rewritten as:

1 = −VlgF
∫ ωc

0

dξ

∮

dn
|Y (n)|2

√

ξ2 +∆2
lm|Y (n)|2

,

where ωc is some ultraviolet cutoff and dn = dΩ/4π denotes integration over the solid

angles. The above equation has non-trivial solution ∆lm ∼ ωce
2/VlgF , corresponding

to pairing in a particular l-channel, only if Vl < 0.

So far V denoted the bare electron interaction. However, as Kohn and Luttinger

pointed out [23], it should actually be replaced by the dressed potential, K, which
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includes many-body renormalization corrections. They were able to demonstrate

that in the perturbative regime, when second-order corrections ∼ V 2 are taken into

account, Kl becomes negative for sufficiently large l, i.e. Kl ∼ −1/l4, regardless of

the form of V . Thus, any weakly coupled repulsive fermion system should become

superconducting at sufficiently low temperature. This claim is usually known as the

Kohn-Luttinger theorem. Similar ideas were applied in [26] to the small-U Hubbard

model. In Chap. 3 we shall return to this problem, but in the context of the strongly

repulsive Hubbard model.

1.1.4 Multiferroics and magneto-electric coupling

In this section we shall introduce basic concepts in the field of multiferroics and

magneto-electric phenomena. For a more detailed review an interested reader is

referred to the works [27, 28, 29].

Multiferroics are materials which exhibit several coexisting ferroic (hence the

name) orderings, e.g. ferroelectric, ferromagnetic, ferrotoroidic, and even ferroelas-

tic. Although there seems to be no precise classification of these materials, it is

customary to crudely divide them into two classes, depending on the origin of ferro-

electricity. In type-1 compounds the ferroelectric and magnetic orders emerge due to

different and largerly independent mechanisms. A classical example is the perovskite

BiFeO3, where ferroelectricity happens because of the displacement of Bi ions, while

magnetism comes from the partially filled d-shell of Fe. The two orders are coupled

through striction effects, which means that this coupling is relatively weak. In type-2

multiferroics, the ferroelectricity is caused by magnetism and exists only in a mag-

netic phase. This implies a much stronger magneto-electric coupling. Perhaps the

most known representative of this group is the spin-spiral multiferroic TbMnO3.

There exists a special “subgroup” of type-1 multiferroic materials in which fer-

roelectricity is caused by the charge ordering. Examples include the famous mag-
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Figure 1.5: (a) Unit cell of LuFe2O4, which includes three FeO triangular double
layers, separated by Lu atoms. (b) Temperature dependence of the electric polariza-
tion in LuFe2O4 (taken from [31]). (c) Ground state of a single FeO double layer.
Black (gray) symbols correspond to the top (bottom) single layer. Filled and open
circles, and crosses denote iron ions: Fe2+ with spin projection Sz = +2, Fe3+ with
Sz = +5/2 and Fe3+ with Sz = −5/2, respectively.

netite Fe3O4, perovskite manganites (PrCa)MnO3, and the charge-frustrated com-

pound LuFe2O4 [30, 31]. Below we give a brief overview of this material, for future

reference.

The lattice of LuFe2O4 is shown in Fig. 1.5(a). It consists of iron-oxygen triangular

double layers (TLL). At high temperature the average valence of iron is Fe2.5+, with

an equal number of Fe2+ and Fe3+ ions5. Below T0 ≈ 500K the system exhibits a two-

dimensional charge-density wave (CDW) order within each layer. At TCO ≈ 330K

5Their electronic configurations are [Ar]3d54s0 and [Ar]3d64s0, respectively.
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a three-dimensional charge-ordering occurs. Because of the frustrated nature of the

triangular lattice, a charge redistribution between layers takes place, so that each

layer within a TLL has a 1:2 (or 2:1) ratio of Fe2+ and Fe3+. This redistribution

“relieves” frustration and a layer can have a charge ordering, with two sublattices

occupied by ions of one kind and the third one – with ions of the second kind. As a

result, the TLL develops an electric polarization, whose temperature dependence is

shown in Fig. 1.5(b).

Below TN ≈ 250K a ferrimagnetic order sets in and LuFe2O4 becomes multi-

ferroic. In Fig. 1.5(c) we show one possible ground state, characterized by the

coexistence of CDW and magnetic orders. Each Fe3+ ion carries a core spin S = 5/2,

while Fe2+ has spin S = 2. The Fe3+ spins order antiferromagnetically in the honey-

comb sublattice, while Fe2+ spins are aligned ferromagnetically. The spin structure

is collinear because of the easy-axis anisotropy associated with spin-orbit interaction

in iron. As we already mentioned, Fe2+ has one extra 3d electron which can prop-

agate. In the charge-ordered state (but above TN) this band is still itinerant, thus

“dissolving” the CDW. However, below the magnetic transition these hopping pro-

cesses are strongly suppressed due to the Hund coupling [4], favoring the CDW order

and further enhancing the electric polarization within a TLL. This simple physical

mechanism is believed to be responsible for the anomaly found in pyroelectric current

measurements around TN (see Fig. 1.5(b)) [31]. In Chap. 4 we shall investigate this

frustration-driven mechanism of multiferroicity in more detail.

The interest in multiferroics is not purely fundamental but is also stimulated by

promising technological applications of these materials, e.g. as low-power memory and

storage devices. These applications would be realistic if the material exibits a sizeable

coupling between its ferroic orders, allowing the manipulation of magnetization with

an external electric field (voltage). In principle, any material should exhibit some

magneto-electric coupling, possibly due to non-linear effects. For applications the so-
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called linear magneto-electric effect is of primary interest. At the phenomenological

level this effect is described by a correction to the Gibbs thermodynamic potential of

the form [32]:

∆ΦME = −αijEiHj,

where αij is the (non-symmetric) magnetoelectric tensor. In the zero-field regime the

magnetization (electric polarization) is proportional to the applied electric (magnetic)

field: Mi = αijEj and Pi = αijHj. Since E is a polar andH is an axial vector, αij 6= 0

only in non-centrosymmetric crystals. Also, αij vanishes in systems without broken

time-reversal invariance.

1.2 Roadmap

The general agenda of this thesis is the study of physical phenomena driven by frus-

tration and strong correlations. Our research focused on three major directions, each

described below in a respective chapter:

• Low-dimensional magnetic insulators (Chap. 2)

Our interest in this field is both fundamental and methodological. First, in Sec.

2.2 we develop a real-space mean-field framework, aimed at computing ground

state properties of frustrated systems. This method combines exact diagonal-

ization of finite clusters and variational calculation of the state of an infinite

system, thus capturing local quantum correlations, and providing a controlled

and unbiased approximation scheme. We apply this approach to several im-

portant models of quantum magnetism. Sec. 2.2 is devoted to investigation of

the non-magnetic phase of the J1-J2 model. In Sec. 2.3 we formulate a local

physical mechanism behind the phenomenon of magnetization plateaux in or-

thogonal dimer compounds such as SrCu2

(

BO3

)

2
, mathematically described by

the Shastry-Sutherland model. Finally in Sec. 2.4 we compute and characterize
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the phase diagram of a non-frustrated Heisenberg magnet with biquadratic spin

interactions.

• Superconductivity in strongly repulsive fermions (Chap. 3)

Here we study the effects of lattice inhomogeneities and frustrating hoppings

beyond nearest neighbors on superconductivity in fermion systems with repul-

sive short-ranged interactions, such as the Hubbard model. We show that under

certain conditions, the above features can lead to a macroscopic ground state

degeneracy which allows magnetic fluctuations to stabilize the superconducting

state for arbitrarily strong fermion repulsion. We also discuss the possibility to

observe this phenomenon in experiments using cold fermionic atoms, e.g. 40K,

in specially prepared optical lattices.

• Magneto-electric coupling due to order-from-disorder (Chap. 4)

In this last chapter we study magneto-electric phenomena in charge-ordered

multiferroic materials. Using the rare-earth oxide LuFe2O4 as a prototype,

we construct a minimal effective model which includes lattice frustration, un-

screened Coulomb and superexchange interactions, and spin-orbit effects. We

investigate its phase diagram and demonstrate how the order-from-disorder

physics leads to a ferroelectric charge ordering. Emergence of the ferrimag-

netism results in an enhancement of the electric polarization, in a qualitative

agreements with experiments in LuFe2O4. The electric and magnetic orders

are coupled by the double-exchange mechanism. This coupling manifests itself

in a finite value of the magneto-electric coefficient, which is strongly enhanced

around the ferrimagnetic transition temperature.
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Chapter 2

Low-dimensional frustrated

magnets

Our study of frustrated magnets has both methodological and fundamental goals.

The key achievments of this chapter can be summarized as follows:

• We develop the hierachical mean-field method – a non-perturbative tech-

nique for computing ground-state properties of the system;

• Using this approach we obtain the phase diagram of the J1-J2 model, and

characterize its quantum paramagnetic phase;

• We propose a physical mechanism, leading to magnetization plateaux in

the orthogonal dimer compound SrCu2

(

BO3

)

2
, described by the Shastry-

Sutherland model.
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2.1 General remarks

A usual method for dealing with quantum spin systems consists of identifying a par-

ticular classical ground state (GS) and building a fluctuation expansion1 around it

[19]. Provided the true GS of the system is not “too far” from this classical one,

the above approach yields GS properties and the spectrum of low-lying excitations.

However, when applied to frustrated magnets, this programme faces a serious diffi-

culty. Indeed, as we saw in Sec. 1.1.2, lattice frustration or conflicting interaction

lead to the classical GS degeneracy, often macroscopic. Quantum fluctuations now

play a prominent role of selecting a particular GS out of several competing phases.

In the usual sense, the notion of a phase is directly related to the concept of an order

parameter (OP) – an expectation value of some local operator – as a unique charac-

teristic of that phase, e.g. magnetization of the magnetic sample. The existence of an

OP implies a certain mean-field description of the problem. Clearly, competition be-

tween different phases makes the formulation of this mean-field approximation quite

challenging, simply because one has to guess the “right” OP. A consistent approach

to studying such systems with competing orders should, therefore, be able to capture

this interplay and consider various possible phases in an unbiased fashion.

In the present chapter we discuss one such mean-field framework, whose central

ingredient is the notion of a hierarchical language (HL) of operators [33] – an operator

basis of the fundamental representation of the highest-dimensional local algebra. For

instance, in the case of two spin-1/2 operators (4 states), the HL is realized by the

generators of su(4). In terms of the HL generators, any local observable can be rep-

resented as a linear, and the Hamiltonian of the system – as a quadratic form. Thus,

the HL provides a natural starting point for an unbiased mean-field approximation –

the hierachical mean-field (HMF) theory.

Of course, an implementation of this approximation scheme depends on the prob-

1Also known as the spin-wave theory, or random-phase approximation.
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lem at hand. Since this chapter studies models, formulated in terms of localized

spins, we choose to implement the HMF approach in real space. In this regard, it is

similar to other cluster mean-field methods, such as the dynamical mean-field theory

(DMFT) [34]. The lattice is divided in spin clusters, the cluster Hamiltonian is diag-

onalized exactly, and the inter-cluster terms are treated approximately. Contrary to

DMFT-like approaches, which handle the inter-cluster interaction perturbatively, we

formulate the HMF approximation as a variational (relative to the energy) theory,

which is much better suited for studying originally translationally invariant systems.

This chapter is organized as follows. Sec. 2.2 introduces the HMF method, using

as an example the J1-J2 model [35] already discussed in Sec. 1.1.2. This method

is then applied in Sec. 2.3 to unveil the physical mechanism responsible for the

emergence of magnetization plateaux in the Shastry-Sutherland model [36]. Another

application of the HMF approach to a non-frustrated Heisenberg planar antiferro-

magnet with four-spin ring exchange interactions [37, 38] is presented in Sec. 2.4.

2.2 Hierarchical mean-field approach to the square

lattice J1-J2 Heisenberg model

In this section we develop the HMF approach by computing the quantum phase dia-

gram and excitation spectrum of the frustrated J1-J2 spin-1/2 Heisenberg model. In

particular, we show how a single variational ansatz for the GS wavefunction allows

one to obtain the entire phase diagram of the system. Our results support the ex-

istence of a quantum paramagnetic phase around J2/J1 = 1/2 (see the end of Sec.

1.1.2) and indicate that its structure is a plaquette crystal. We also introduce fluc-

tuations around the HMF solution, and demonstrate that in the paramagnetic phase

the ground and first excited states are separated by a finite gap, which closes in the

ordered Néel and columnar phases.
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2.2.1 Introduction

Despite numerous analytical and numerical efforts, the J1-J2 model, which exhibits

a two sublattice Néel AF, quantum paramagnetic and a four sublattice columnar AF

states, continues to attract a lot of attention (for a review of recent achievements,

see [13]). While existence of the Néel-ordered phase at small frustration ratio J2/J1

and of the columnar AF state at large J2/J1 is widely established, properties of

the intermediate non-magnetic phase, which occurs around the maximum frustration

point J2 = J1/2, are still under debate. In particular, the correlated nature of the

intermediate state and the kind of quantum phase transition separating it from the

Néel state is unclear. Various methods have been applied recently to characterize

the quantum paramagnetic phase, such as Green’s function Monte Carlo [39, 40, 41],

coupled cluster methods [42], series expansions [43] and field-theoretical methods [44,

45, 46]. As a result several possible candidate ground states were proposed, namely:

a spin liquid [40] preserving translational and rotational symmetries of the lattice

as well as various lattice symmetry breaking phases, out of which the dimer phase

[45, 47], and the plaquette resonating valence bond phase [39] are worth mentioning.

Not surprisingly, the nature of the quantum phase transition separating the Néel-

ordered and quantum paramagnetic phases is also under scrutiny. The most dramatic,

and at the same time original, scenario [48] is believed to violate the Ginzburg-Landau

paradigm of phase transitions [49], which revolves around the concept of an order

parameter. Such point of view is based on the observation that there are different

spontaneously broken symmetries in the Néel and quantum paramagnetic phases,

which thus cannot be connected by a group-subgroup relation. The former, of course,

breaks the SU(2) invariance of the Hamiltonian and lattice translational symmetry

T 2 [50], but preserves the four-fold rotational symmetry of the square C4. On the

2That the translational symmetry is broken in the Néel phase is easy to see, if one assumes

broken spin SU(2) symmetry. Then, due to the principle of weakening of correlations, the staggered
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other hand, the paramagnetic phase is known to restore the spin-rotational symmetry

and is believed to break T and C4, due to spontaneous formation of dimers along the

links of the lattice [47, 45]. It follows that these two phases cannot be joined by

the usual Landau second-order critical point. This phase transition can either be of

the first-order [51] (the latest coupled cluster calculations [42], however, seem to rule

out this possibility), or may represent an example of a second order critical point,

which cannot be described in terms of a bulk order parameter, but rather in terms

of emergent fractional excitations (spinons), which become deconfined right at the

critical point [48].

Evidence regarding the structure of the non-magnetic phase is quite controversial.

The results of spin-wave calculations [45], large-N expansions [47], and calculations

using the density matrix renormalization group combined with Monte-Carlo simu-

lations [41] are believed to indicate the emergence of a dimer order. On the other

hand, Monte-Carlo [39] and coupled cluster calculations [42], and analytical results

[44] seem to support the presence of C4 symmetry (plaquette-type ordering) in the

paramagnetic phase. In the absence of a reliable numerical or analytical proof of

existence of any particular order in the non-magnetic region, there is no apparent

reason to believe in the exotic deconfined quantum criticality scenario. Although

there apparently exists numerical evidence [52], at the moment of writing we are un-

aware of a local Hamiltonian in space dimensions larger than one rigorously proven

to exhibit the type of quantum critical point discussed in [48]. It was demonstrated

in [53] that a two-dimensional lattice model can possess a first order quantum critical

point, which exhibits deconfined excitations.

In the present section we construct the HMF approximation to systematically in-

correlation function satisfies:

lim
|i−j|→∞

(−1)i−j〈Sz
i S

z
j 〉 = (−1)i−j〈Sz

i 〉〈Sz
j 〉,

which can be constant only if 〈Sz
i 〉 depends on i.
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vestigate properties of the various phases displayed by the J1-J2 model. The crux of

our method is identification of a plaquette (spin cluster 2×2 or even larger 4×4 (super-

plaquette) symmetry-preserving cluster) as the relevant elementary degree of freedom,

which captures necessary quantum correlations to represent essential features of the

phase diagram. The importance of this degree of freedom was realized only recently in

the present context [44], and somewhat earlier in connection with SU(4) spin-orbital

[54], and Hubbard [55] models. Besides being variational, our formalism has the at-

tractive feature of preserving fundamental lattice point symmetries and the SU(2)

symmetry of the Hamiltonian. Remarkably, such simple mean-field calculation al-

ready yields all known results concerning the phase diagram of the J1-J2 model, with

a good accuracy, namely: existence of a Néel-ordered phase with antiferromagnetic

wavevector (π, π) and spin-wave type excitations for J2/J1 . 0.42, a non-magnetic

intermediate gapped phase, separated by a second-order quantum phase transition,

and a first-order transition point, which is characterized by the discontinuous disap-

pearance of the energy gap and connects the paramagnetic state with the columnar

antiferromagnetic phase at (π, 0) and (0, π) for J2/J1 & 0.66.

We emphasize that our investigation primarily focuses on the symmetry analysis of

the various phases. Out of many possible coarse graining scenarios, such as covering of

the 2D lattice with plaquettes, dimers and crosses, only the C4-symmetry preserving

plaquette (or superplaquette) covering (which reproduces the original Bravais lattice)

displays the correct phase diagram. In particular, the intermediate paramagnetic

phase is shown to be a plaquette crystal, which preserves spin and lattice rotational

symmetries. For all other scenarios, including dimerized (bond-ordered) phases, we

were unable to reproduce all known quantum phase transition points of the model.

The HMF coarse graining procedure leads to an explicit breaking of a particular

translational symmetry. As a result, one cannot draw rigorous conclusions on the

order of the phase transitions based solely on a fixed coarse graining. Nevertheless,
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it is still possible to make some predictions using a finite-size scaling of the relevant

degree of freedom towards the thermodynamic limit, where the effects associated with

coarse graining should disappear.

Our main conclusions are summarized in panel (a) in Fig. 2.1, which also empha-

sizes symmetry relations between different phases of the model.

2.2.2 The plaquette degree of freedom

The J1-J2 model was defined in Eq. (1.4):

H = J1
∑

〈i,j〉
SiSj + J2

∑

〈〈i,j〉〉
SiSj .

As mentioned above, we choose the plaquette – any square in Fig. 1.2(c) – as our

elementary degree of freedom. Then, assuming that the number of sites N is cho-

sen appropriately, the entire lattice can be covered with such plaquettes in a sub-

exponentially [54] (∼ 2
√
N ) large number of ways.

To illustrate the main idea of the method, we consider in detail only the sym-

metric covering of the lattice with 2 × 2 plaquettes, which preserves the C4 lattice

symmetry, see panel (b) in Fig. 2.1, although later the displaced covering (Fig. 2.2,

left panel), which breaks C4 down to C2 (two-fold symmetry axis), and the case of

larger plaquettes (superplaquettes, see Appendix A and Fig. 2.12) will be analyzed

as well.

It is convenient to take as a basis the states |a〉 = |l1l2LM〉, where l1 = S1 + S4

and l2 = S2 + S3 are total spins of the plaquette diagonals (see the legend in Fig.

2.1(b) for site numbering), while L = l1 + l2 is the total spin of the entire plaquette

andM is its z-component. This basis is a natural one and allows us to explicitly label

states with corresponding representations of SU(2). The states {|a〉} are eigenstates
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Néel Plaquette Crystal

Landau 1st order
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Landau 2nd order J2J2 = 0
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Figure 2.1: (a) A schematic phase diagram of the J1-J2 model, summarizing our re-
sults. In each phase we show spontaneously broken (framed symbols) and unbroken
symmetries (usual symbols). The translational invariance is broken along both di-
rections in the Néel and paramagnetic phases, and only along the y–direction in the
columnar phase. This fact is indicated by the subscripts xy and y after T . Conclu-
sions regarding the order of the phase transition separating Néel and plaquette crystal
phases, as well as symmetries of various phases, are based upon extrapolation of our
results towards the thermodynamic limit. (b) Symmetric covering of the 2D lattice
with 2 × 2 plaquettes. Each plaquette is connected to 4 nearest and 4 next-nearest
neighbors.

of the single-plaquette Hamiltonian

H� = J1
(

S1 + S4

)(

S2 + S3

)

+ J2
(

S1S4 + S2S3

)

with eigenvalues

ǫl1l2L =
J1
2

[

L
(

L+1
)

− l1
(

l1 +1
)

− l2
(

l2 +1
)]

+
J2
2

[

l1
(

l1 +1
)

+ l2
(

l2 +1
)

− 3
]

. (2.1)

The next step is to establish how a plaquette couples to the rest of the system.

In Fig. 2.1(b) we show the symmetric plaquette covering of the 2D lattice. In the

figure, the vertices of every non-central plaquette are similarly labeled by the numbers

5, 6, 7, 8, and total spins of diagonals are l3 = S5 + S8 and l4 = S6 + S7. In the
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uncoupled basis, the matrix elements of the inter-plaquette interaction are:

(

Hσ
int

)a′1a
′
2

a1a2
=

∑

LM

〈

λ′1λ
′
2, LM |Hσ

int|λ1λ2, LM
〉

× (2.2)

×
〈

L′1M
′
1L
′
2M

′
2|L′1L′2LM

〉〈

L1M1L2M2|L1L2LM
〉

,

where σ = 1 (σ = 2) corresponds to the nearest (next-nearest) neighbor plaquette

interaction, L1,L2 (L′1,L
′
2) represent initial (final) angular momenta of the two pla-

quettes and L = L1 +L2 is their total angular momentum. In this equation we have

introduced the notations λ1 = {l1l2L1}, λ2 = {l3l4L2} and ai = {λiMi}, and similarly

for the primed indices. Because each plaquette has 4 nearest neighbors (NN) and 4

next-nearest neighbors (NNN) (see Fig. 2.1(b)), the symmetrized NNN interaction

may be written as:

〈

λ′1λ
′
2, LM |H2

int|λ1λ2, LM
〉

= J2ρ
L′
1L

′
2

L1L2
(L)×

×
(

S
λ′
1λ1

3 S
λ′
2λ2

6 + S
λ′
1λ1

1 S
λ′
2λ2

8 + S
λ′
1λ1

2 S
λ′
2λ2

7 + S
λ′
1λ1

4 S
λ′
2λ2

5

)

.

while the symmetrized NN plaquette interaction has the form:

〈

λ′1λ
′
2, LM |H1

int|λ1λ2, LM
〉

= J1ρ
L′
1L

′
2

L1L2
(L)

[(

S
λ′
1λ1

1 + S
λ′
1λ1

4

)(

S
λ′
2λ2

6 + S
λ′
2λ2

7

)

+

+
(

S
λ′
1λ1

2 + S
λ′
1λ1

3

)(

S
λ′
2λ2

5 + S
λ′
2λ2

8

)]

+ 2
〈

λ′1λ
′
2, LM |H2

int|λ1λ2, LM
〉

,

In the expressions for matrix elements of H1,2
int the symbols Sλ′λ

n = 〈λ′‖Sn‖λ〉 denote

reduced matrix elements of the n-th spin operator, and:

ρ
L′
1L

′
2

L1L2
(L) =

1

4
(−1)L+L′

2+L1











L′1 L′2 L

L2 L1 1











,

where {· · · } are Wigner 6j-symbols (or Racah coefficients) [56].
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Let us now identify the plaquette degree of freedom with a Schwinger boson γia

which creates a specific state of the plaquette: |a〉i ↔ γ†ia. The J1-J2 Hamiltonian

(1.4) can be expressed in the plaquette basis as:

H =
∑

i,a

ǫaγ
†
iaγia +

∑

〈ij〉σ
σ=1,2

(

Hσ
int

)a′1a
′
2

a1a2
γ†ia′

1
γ†ja′

2
γia1γja2, (2.3)

where we abbreviated 〈ij〉σ =
(

〈ij〉, 〈〈ij〉〉
)

, the operator γ†ia creates a boson on site

i of the plaquette lattice (which contains N� = N/4 sites) in the state, denoted by

an index a, running through the entire single-plaquette Hilbert space (of dimension

24 = 16), and the summation is performed over doubly repeated dummy indices.

The unphysical states are eliminated by enforcing the local constraint
∑

a γ
†
iaγia = 1.

In what follows we impose periodic boundary conditions on the plaquette lattice.

The bosonic operators γia define the HL (see the beginning of this chapter) for our

problem.

2.2.3 Hierarchical mean-field approximation

As follows from Eq. (2.1) the lowest single-plaquette state has energy ǫ1100/4 =

−J1/2 + J2/8 per spin which, when J2 = 0, gives only the energy of a classical 2D

antiferromagnet. Thus it is necessary to take into account the interaction term in Eq.

(2.3).

The HMF approximation is a mean-field approach, performed on the relevant

degrees of freedom. Here we discuss the simplest one – a Hatree-Fock like (HF)

approximation. A possible way to include fluctuation corrections is presented in

Appendix B at the end of this chapter. The HF approximation introduces a mixing

of single-plaquette states, which minimizes the total energy of the system and is

based on a canonical transformation among the bosons. Here we consider only the
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homogeneous case, when this transformation is plaquette-independent:

γia = Rn
aΓin.

The matrix R (which we can choose to be real) satisfies canonical orthogonality and

completeness relations:

Rn
aR

n′

a = δnn′ ; Rn
aR

n
a′ = δaa′

A translationally invariant variational ansatz for the ground state is a boson conden-

sate in the lowest HF single-particle energy state (n = 0):

|HF〉 =
∏

i

Γ†i0|0〉, (2.4)

where |0〉 is the Schwinger boson vacuum. Since the state (2.4) has one boson per

plaquette, there is no need to impose the Schwinger boson constraint in the calcula-

tion.

Minimizing the total energy with respect to R, we arrive at the self-consistent

equation:
{

ǫaδaa′ +
∑

σ

zσ
(

Hσ
int

)aa1

a′a2
R0

a1R
0
a2

}

Rn
a′ = εnR

n
a , (2.5)

where z1 = z2 = 4 are the nearest- and next-nearest coordination numbers. The

ground state energy (GSE) per spin is then given by the expression:

E0

N
=

〈HF|H|HF〉
N

=
1

8

(

ε0 +
∑

a

ǫa
(

R0
a

)2
)

(2.6)

with ε0 being the lowest eigenvalue of Eq. (2.5).

Another fundamental quantity to compute is the polarization of spins within a

plaquette:

〈HF|Sz
in|HF〉 = (Sz

n)a′aR
0
a′R

0
a,
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where n = 1 . . . 4 is the spin index, and the matrix elements (determined from the

Wigner-Eckart theorem) are:

(Sz
n)a′a = 〈l′1l′2L′M ′|Sz

n|l1l2LM〉 = (2.7)

=(−1)L+L′+1δMM ′

〈10LM |1LL′M〉√
2L′ + 1

〈l′1l′2L′||Sn||l1l2L〉.

This enables us to define the staggered and columnar (along x and y lattice directions)

magnetizations:

Mstag =
1

4
〈HF|Sz

1 + Sz
4 − Sz

2 − Sz
3 |HF〉; (2.8)

Mcol(x, y) =
1

4
〈HF|Sz

1 − Sz
4 + Sz

2,3 − Sz
3,2|HF〉.

Notice the extreme simplicity of the HMF approximation. The reason why it

is able to realize meaningful results is that the plaquette degree of freedom seems

to contain the main correlations defining the physics of the J1-J2 model. To avoid

confusion, we emphasize that the HF approximation and the fluctuation theory of

Appendix B are physically (and obviously mathematically) different from the spin-

wave or canonical Schwinger-Wigner boson mean-field approach to spin systems [57].

In particular, we make no assumption about the underlying ground state, thus allowing

for an interplay of various quantum phases. Moreover, it will be demonstrated that the

collective excitation spectra in each phase consistently reflect spontaneously broken

symmetries, unlike the usual Schwinger boson case [57] in which one obtains gapped

excitations.

2.2.4 GS properties and excitation spectrum of the model

Our choice of the plaquette as an elementary degree of freedom remains unjustified

at this point. In order to show its relevance we applied the HMF analysis to several
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Figure 2.2: Different tesselations and clusters used in the HMF calculation. Left:
displaced plaquette covering. Notice that the C4 symmetry is broken down to C2.
Center: Connectivity of the dimer lattice for displaced (left) and symmetric (right)
dimer coverings. The rotational C4 symmetry is lowered to C2 in both cases. Right:
Covering of the lattice with crosses – arrays of five spins. Since one cross cannot form
a singlet, it is necessary to double the unit cell, as indicated by the gray shading. This
choice of a degree of freedom clearly preserves the C4 symmetry, but the resulting
lattice breaks it.

other tesselations (besides the symmetric plaquette covering, case (a), shown in Fig.

2.1, right panel): (b) superplaquette (spin cluster 4 × 4) degree of freedom, covering

the lattice in such a way that C4 is preserved (for details see Appendix A at the end of

this chapter); (c) displaced plaquette covering of the lattice, Fig. 2.2, left panel; (d)

symmetric and displaced dimer coverings, shown in the center panel of Fig. 2.2; (e)

cross degree of freedom, Fig. 2.2, right panel. One should observe that symmetries

of the original Bravais lattice are preserved only in cases (a) and (b). In cases (c)

and (d) the lattice rotational symmetry C4 is lowered to C2. Case (e) is special in the

sense that an isolated degree of freedom does not possess a singlet ground state. The

information about a particular configuration is encoded in matrix elements of Hσ
int,

whose calculation is elementary. Other equations presented above retain their form.

For each of the above cases we iteratively solve Eq. (2.5) and compute the GSE

(2.6), staggered and columnar magnetizations (2.8)). The main message, which we

would like to convey here, is that only the plaquette degree of freedom (of any size)

is relevant for constructing the phase diagram of the J1-J2 model.
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(i) Symmetry preserving plaquette configurations

Let us focus first on cases (a) and (b), i.e. symmetry-preserving coverings of the lattice

with plaquette (Fig. 2.1(b)) and superplaquette (Fig. 2.12) degrees of freedom. The

resulting GSE as a function of J2/J1 is shown in Fig. 2.3(a). One immediately

observes a level-crossing at Jc2
2 ≈ 0.67J1, indicating the first-order transition and a

second-order quantum critical point at Jc1
2 ≈ 0.42J1, which is supported by a jump

of the second order derivative d2E0/dJ
2
2 , Fig. 2.3(b). Néel and columnar phases

are characterized by spontaneously broken SU(2) symmetry. The former exhibits a

nonvanishing staggered magnetization (Mstag) while the latter has nonzero columnar

magnetization along the x-direction (Mcol(x)). Both order parameters become zero

in the paramagnetic phase, suggesting that SU(2) is restored. These results are

summarized in Fig. 2.4(a), from which it also follows that the phase transition at Jc1
2

is continuous, while Jc2
2 corresponds to a first-order transition point. Recall that our

approach does not explicitly break the spin rotational symmetry, thus allowing for

the treatment of competing ground states.

As expected, considering a larger elementary degree of freedom – superplaquette

– leads to a significant improvement of the GSE and reduction of the magnetization,

due to larger quantum fluctuations. The finite-size scaling (insets in Figs. 2.3(a)

and 2.4(a)), using these two sizes (2 × 2 and 4× 4), indicates that E0(J2 = 0)/N →

−0.64J1 and Mz(J2 = 0) → 0.39 in the thermodynamic limit, a satisfying result for a

HF approximation, which completely ignores fluctuations (these numbers should be

compared with well-known results of Monte-Carlo simulations [58]: E0/N ≈ −0.67J1

and Mz ≈ 0.31).

Next we focus on symmetry properties of the various phases in Fig. 2.1(a). At

all values of J2 ≤ Jc2
2 the lattice translational symmetry T is broken, but the ro-

tational C4 symmetry is preserved. For J2 ≤ Jc1
2 this corresponds to a Néel-type

long-range order with spontaneously broken SU(2). At large values J2 ≥ Jc2
2 we ob-
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Figure 2.3: (a) Ground state energy per spin computed at the HF level for the 2× 2
and 4×4 plaquette elementary degrees of freedom. The inset shows finite-size scaling
in the AF phase at J2 = 0. (b) Second-order derivative d2E0/dJ

2
2 for the 2 × 2 and

4× 4 plaquette degrees of freedom. The discontinuity at J2/J1 ≈ 0.42 is indicative of
a second-order quantum phase transition. In the inset we present finite-size scaling

for the jump g ≡ (J1d
2E0/NdJ

2
2 )

Jc1
2 +0

Jc1
2
−0.

serve the columnar ordering, which spontaneously breaks C4 down to C2, and SU(2),

but partially (i.e. along one direction) restores the lattice translational symmetry.

We present a more detailed discussion of the spatial symmetries later. In the inter-

mediate region J2 ∈ (Jc1
2 , J

c2
2 ) the spin SU(2) rotational symmetry is restored. In this

paramagnetic phase the ground state wavefunction is a tensor product of individual

plaquette ground states (with quantum numbers l1 = l2 = 1, L =M = 0):

|1100〉 = 1

2
√
3

[

2
(

| ↑1↑4↓2↓3〉+ | ↓1↓4↑2↑3〉
)

−

−
(

| ↑1↓4↑2↓3〉+ | ↑1↓4↓2↑3〉+ | ↓1↑4↑2↓3〉+ | ↓1↑4↓2↑3〉
)

]

,

where arrows denote Sz-eigenstates of spins within the plaquette (for site numbering

see Fig. 2.1(b)). This ground state necessarily breaks the lattice translational sym-

metry, but preserves C4. In fact, the paramagnetic region in Fig. 2.4(b) is a trivial

plaquette crystal: a set of non-interacting plaquettes, because the expectation value

of the plaquette interaction (see Eq. (2.3)) in the singlet state
∏

i γ
†
i,(1100)|0〉 vanishes.
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Figure 2.4: (a) Staggered magnetization, Mstag, for J2 ≤ Jc1
2 and columnar magneti-

zation along the x-direction, Mcol(x), for J2 ≥ Jc2
2 (for the 2× 2 and 4× 4 plaquette

degrees of freedom), computed at the HF level. Notice the continuous phase transition
at J2/J1 ≈ 0.42 and a first-order transition at J2/J1 ≈ 0.68 (2× 2) and J2/J1 ≈ 0.66
(4 × 4). The inset shows finite-size scaling of Mstag at J2 = 0. (b) HF ground state
expectation values of the symmetry-breaking perturbations, given by Eq. (2.9), plot-
ted as functions of J2/J1 for the plaquette and superplaquette degrees of freedom.
Due to the C4 symmetry in the Néel and paramagnetic phases, values of F4 are twice
larger than the corresponding values of F1. The inset shows finite-size scaling for F4

for three values of J2/J1: 0 (circles), 0.504 (triangles) and 0.997 (rhombs).

An analogous situation is realized when the superplaquette is chosen as an elementary

degree of freedom: the paramagnetic phase is a crystal of superplaquettes. It is inter-

esting to note that in [39] a “plaquette resonating-valence-bond state”, exactly equal

to |1100〉, has been proposed. However, later [40] the intermediate phase was argued

to be a spin liquid, i.e. a state that preserves the lattice translational symmetry.

In order to learn about spatial symmetries in various phases, we compare magni-

tudes of the several lattice symmetry-breaking observables proposed in the literature.

We consider the following three, introduced in [42] (in the notation of that paper):

F1 =
1

N

∑

x,y

(−1)xSx,ySx+1,y;

F2 =
1

N

∑

x,y

Sx,y

(

Sx+1,y − Sx,y+1

)

;

F4 =
1

N

∑

x,y

Sx,y

[

(−1)xSx+1,y + (−1)ySx,y+1

]

,
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Figure 2.5: The two lowest excitation energies taken at the center of the plaquette
Brillouin zone. The main panel shows the self-consistent solution to Bogoliubov’s
equations, while the inset corresponds to the solution without self-consistency (i.e.
by linearizing the HMF equation (2.5)). Since wavefunctions of collective excitations
in the Néel and columnar phases have different symmetries, there are level crossings
in the non-magnetic phase (cusps in the plot).

where indices x, y specify a spin in the 2D lattice. The operator F4 probes the

plaquette ordering, which preserves the lattice rotational symmetry, while F1 and

F2 correspond to the columnar ordering. We note that F1 is already non-zero for

an isolated plaquette (or superplaquette). These functions can be combined in the

complex “order parameter” introduced in [48]. Here we show details of the calculation

of functions F1,2,4 for the plaquette degree of freedom (case (a)) and only present the

result for F4 for the superplaquette (case (b)). In the plaquette representation the

above operators are written as:

F1 =
1

N

∑

i,j

[(

S1;i,jS2;i,j + S3;i,jS4;i,j

)

−
(

S2;i,jS5;i+1,j + S4;i,jS7;i+1,j

)]

; (2.9)

F2,4 =
1

N

∑

i,j

[(

S1;i,j ∓ S4;i,j

)(

S2;i,j ∓ S3;i,j

)

±
(

S2;i,jS5;i+1,j + S4;i,jS7;i+1,j∓

∓ S3;i,jS5;i,j+1 ∓ S4;i,jS6,i,j+1

)]

.

In this equation the indices i, j are coordinates of a plaquette in the lattice.
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Expectation values of the functions (2.9) in the HF GS are shown in Fig. 2.4(b).

Both phase transition points Jc1
2 and Jc2

2 are clearly seen from this plot. All func-

tions change continuously across the second-order critical point Jc1
2 and jump at the

first-order transition point Jc2
2 . Except in the columnar phase the values of F4 are ev-

erywhere exactly twice larger than those of F1, which is an indication of the unbroken

four-fold rotational symmetry of the lattice in these regions. In the columnar phase,

on the other hand, this symmetry is broken and the above relation does not hold.

While in the Néel and columnar phases nonlocal terms in Eq. (2.9) are important,

in the paramagnetic state the only contribution to either expectation value comes

from isolated plaquettes (local terms in (2.9)), or superplaquettes. This observation

is consistent with properties of the ground state in the non-magnetic phase, discussed

earlier in this section.

As we already mentioned, any choice of a degree of freedom breaks explicitly the

lattice translational symmetry T , with the result that links in the lattice become

inequivalent. Indeed, the functions of Eq. (2.9), defined on the links, have non-zero

values even in the AF phase at J2 = 0. However, this effect vanishes in the thermo-

dynamic limit (i.e. as the size of the degree of freedom is increased). The finite-size

scaling for F4(J2/J1) is presented in the inset to Fig. 2.4(b). The three extrapolated

values: F4(0) = −0.075, F4(0.504) = −0.245 and F4(0.997) = −0.004, suggest that

the “link-wise” translational invariance is restored in the thermodynamic limit in the

Néel and columnar phases, but not in the plaquette crystal phase. Moreover, the

value of the jump g ≡ J1d
2E0/NdJ

2
2

∣

∣

Jc1
2 +0

Jc1
2 −0

, extrapolated to the thermodynamic limit

(see inset to Fig. 2.3(b)) remains finite: g(Jc1
2 ) = −1.006. In other words, these re-

sults imply that the critical point Jc1
2 corresponds to the usual Landau second-order

phase transition.
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(ii) Collective excitations in the plaquette crystal phase

Until now we have considered only ground-state properties of the J1-J2 model. Low-

lying excited states also represent considerable interest. The paramagnetic phase is

known to have gapped excitations, while Néel and columnar phases exhibit Goldstone

modes. Thus the phase transition points Jc1
2 and Jc1

2 must be accompanied by the

opening of a gap in the excitation spectrum: the former in a continuous and the

latter in a discontinuous fashion. In Appendix B we present a particular method to

obtain the collective spectrum of the system. The main idea of this approximation

is borrowed from the Bogoliubov-Fetter theory of superfluidity [59]. Assume that on

each plaquette the majority of Schwinger bosons form a condensate in an appropri-

ately chosen lowest energy state and neglect fluctuations in the number of condensed

particles. Due to the Schwinger boson constraint, this quantity has the meaning of a

probability to find a given plaquette in the lowest energy HF state, rather than the

number of particles. Nevertheless, we will call it the condensate fraction n0, which, in

principle, should be determined self-consistently, and is a measure of the applicability

of the entire approximation: it should satisfy the inequality |n0 − 1| ≪ 1. Once the

condensation part is separated from γia, what remains describes fluctuation correc-

tions to the HF ground state. These fluctuations have rather strong effects near the

phase transition points, leading to a considerable shift of Jc1
2 and a smaller change in

value of Jc2
2 . These facts imply that our approximation breaks down near the phase

transition points. In Appendix B it is shown that close to the transition, the con-

densate is strongly suppressed. Deep in each phase n0 ∼ 0.9 and the approximation

is valid, allowing us to draw conclusions about general properties of the collective

spectrum.

The complete summary of the results is given in Appendix B. Here we only present

the most interesting one: the gap in the excitation spectrum as a function of J2/J1.

Although we focus only on case (a) (2 × 2 plaquette), the superplaquette degree of
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freedom can be considered in a similar manner. The gap always occurs in momen-

tum space at k = 0, which reflects translational invariance of the plaquette lattice.

Below we focus only on this point in the plaquette Brillouin zone. In fact, there are

16− 1 = 15 collective branches and only some of them become gapless in the phases

with spontaneously broken SU(2). However, in the paramagnetic phase all branches

develop a gap. In Fig. 2.5 we show the energy gap ∆(J2) = ω(k = 0, J2) for the two

lowest excitation branches in a system of 100 × 100 plaquettes, which approximates

well the thermodynamic limit. The main panel shows results of the self-consistent

solution of Bogoliubov’s equations. The inset compares it with the solution of the

HMF (or Gross-Pitaeveskii) equation (2.5), linearized around the mean-field solu-

tion. This procedure corresponds to the weak-coupling approximation. In the Néel

and columnar phases there are two spin wave-type Goldstone modes, both of which

acquire a gap in the paramagnetic phase at Jc1
2 and Jc2

2 . However, as follows from Fig.

2.5, the positions of these points change from their HF values to Jc1
2 ≈ 0.33J1 and

Jc2
2 ≈ 0.65J1. The critical point Jc1

2 was obtained by extrapolation of the staggered

magnetization curve (Fig. 2.13(b)) to zero and the first-order point Jc2
2 by extrap-

olating the two GSE curves in Fig. 2.13(a) until intersection. The single-plaquette

physical picture discussed previously in connection with the paramagnetic phase re-

mains valid, e.g. the condensation occurs again in the plaquette state |1100〉. Using

this observation and symmetries of the matrix elements
(

Hσ
int

)a′b′

ab
, one can rigorously

show the existence of a gap in the non-magnetic region. We can say that it is a

property of our HMF approximation, rather than a numerical evidence.

(iii) Other degrees of freedom

Finally we comment on the results for cases (c)-(e) which, contrary to the configu-

rations considered before, explicitly break lattice rotational symmetry (see Fig. 2.2).

The corresponding GSEs are shown in Fig. 2.6. In contrast to the previously con-
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Figure 2.6: HF ground state energy per spin for the displaced plaquette and cross
(left panel), and dimer (right panel) coverings.

sidered scenarios, these cases give qualitatively wrong phase diagrams. Indeed, if we

cover the lattice with displaced plaquettes or crosses, there exists no classical spin

configuration which gives the long-range Néel order. On the other hand, such a con-

figuration exists for the columnar state. For the displaced plaquette covering the

low-J2 phase J2 ≤ Jc2
2 is an SU(2) singlet, and spatially is a set of non-interacting

plaquettes (notice the coincidence of 2 × 2–plaquette energies in the paramagnetic

phases of Figs. 2.3(a) and 2.6). Thus the phase transition to the columnar state is

the first-order. For the cross covering, on the other hand, SU(2) is explicitly broken

for all values of J2, but since the columnar phase partially restores the lattice trans-

lational invariance, it is again separated from the non-magnetic state by a first-order

phase transition point. The two dimer configurations (case (d)) are complementary to

each other in the sense that one of them has only the classical Néel state and another

– only the columnar phase. It follows that these configurations can have only one

second-order critical point at which SU(2) is restored and other symmetries remain

broken. These observations imply that the coarse graining prescriptions (c)-(e) are

probably a bad starting point for any approximation scheme.
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2.2.5 Concluding remarks

Let us now put our main conclusions in perspective by making several summarizing

remarks. It should be emphasized that the discussion below is based on the results

of the finite-size scaling analysis. From our presentation it follows that dimer (bond)

order is always unfavorable in the non-magnetic phase. Notice that even when the

plaquette coverings were considered such an order did not occur, although sponta-

neous dimerization was not explicitly prohibited. Instead the quantum paramagnetic

phase prefers to preserve the lattice rotational symmetry, which makes the phase

transition separating it from the Néel phase fit perfectly well within the Ginzburg-

Landau paradigm. The data presented for the staggered magnetization (Fig. 2.4(a))

and symmetry-breaking observables (Fig. 2.4(b)) indicate that the symmetry group

of the Néel state is a subgroup of the symmetry group in the paramagnetic phase,

as both phases break T and preserve C4, but the latter also preserves SU(2). On

the contrary, there is no such group-subgroup relation between the paramagnetic and

columnar antiferromagnetic phases. Consequently, the transition between these two

states is first order. These observations are summarized in Fig. 2.1(a). Starting

from the known symmetry in the Néel state and assuming validity of the Landau the-

ory, one can unambiguously rule out dimerized structures in the paramagnetic phase,

since they break lattice rotational symmetry. Therefore our results do not favor the

scenario of deconfined quantum criticality advocated in [48, 42]. As we already men-

tioned several times, our method explicitly breaks a particular lattice translational

symmetry: the ground state in Eq. (2.4) at J2 = 0 (AF phase), is not invariant under

a [11] lattice translation. One way to cure this problem is to consider variational

wavefunctions of the “resonating plaquette” type:

|Ψ〉 =
(

1 + T11
)

|HF〉,
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which restore that symmetry (T11 is the translation operator along the [11] direction

in the lattice). This state describes two resonating plaquette configurations, shifted

with respect to each other along [11]. Results of calculations using this wavefunction

for systems up to 6 × 6 spins indicate that for J2 < Jc1
2 the ground state has long-

range Néel order and is paramagnetic for J2 ∈ (Jc1
2 , J

c2
2 ). The intermediate phase has

a plaquette crystal order, but with partially restored translational invariance. The

phase transition at Jc1
2 is still of the second-order, which is not surprising as it can be

described solely in terms of the SU(2) order parameter. Based on these small system

sizes, we can not definitively conclude whether this phase transition remains of the

second-order or becomes weakly first-order in the thermodynamic limit.

Next we observe that, despite profound differences between the 2D and 1D equiv-

alent J1-J2 models, their non-magnetic phases present some similarities. The one-

dimensional model is known to be quasi-exactly solvable [60] at the point J2 = 0.5J1

and exhibits a paramagnetic ground state with short-range correlations for J2 above

the critical value [61] Jc
2 ≈ 0.24J1 (due to the peculiar physics in one dimension,

the critical point Jc
2 is an essential singularity and may not be accessible for the

HMF approximation of the type presented here). In this non-magnetic region the

ground state is doubly degenerate, corresponding to two possible coverings of a 1D

lattice with dimers, in accordance with the Lieb-Schultz-Mattis theorem [62]. Un-

fortunately, a finite-size scaling calculation for the gap between the lowest and first

excited energy levels, based on exact diagonalization of the 2 × 2 and 4 × 4 clusters

with periodic boundary conditions, does not provide a definitive answer to the ques-

tion of whether the ground state of the 2D J1-J2 model becomes degenerate in the

region Jc1
2 ≤ J2 ≤ Jc2

2 . This is indeed what one would expect on the basis of a gen-

eralization of the Lieb-Schultz-Mattis theorem to higher space dimensions (see, e.g.

[63]). At the HF level, it is true that different plaquette coverings of the lattice have

the same energy (simply because each plaquette is in its singlet ground state). How-
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ever, the total number of such configurations grows sub-exponentially ∼ 2
√
N , which

should be contrasted with the dimer covering problem, where this number is known

[64] to be exponentially large. Based on this distinction, one may speculate that if

our plaquette picture is valid, there is not enough different plaquette configurations

for the paramagnetic phase to become a spin liquid (i.e. a resonating plaquette state).

This statement requires a separate investigation.

Finally, we emphasize that our main goal was to investigate the fundamental sym-

metries of the phases exhibited by the J1-J2 model. Although the energies presented

for the 2 × 2 and 4 × 4 plaquette cases are higher than those obtained by more so-

phisticated numerical methods, they can be systematically improved by considering

correlated trial wavefunctions or by using more complex methods which build upon

the results reported here. However, we expect that our conclusions on the symmetries

of the phases will remain unchanged.

In summary we analyzed the phase diagram of the 2D J1-J2 model on a square

lattice, focusing on symmetries of the various phases. It was shown that in this

model the HL [33] is defined by identifying the plaquette as a relevant degree of

freedom. Consistent with previous works, we found the quantum paramagnetic phase

in the interval 0.42 ≤ J2/J1 ≤ 0.66. Our analysis indicates that the paramagnetic

phase is a plaquette crystal, preserving both lattice and spin rotational symmetries.

Extrapolation of our numerical results to the thermodynamic limit suggests that

the Ginzburg-Landau paradigm of phase transitions is perfectly applicable in this

case. Within the HMF there is a group-subgroup relation between symmetries of

the non-magnetic and Néel phases, which are thus separated by a second-order phase

transition. On the contrary, such relation does not exist between the plaquette crystal

and columnar antiferromagnetic phases, so the corresponding transition is first order.

We also proposed a way to include fluctuations around the HMF GS and demonstrated

that the quantum paramagnetic state is characterized by a finite gap in the excitation
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spectrum, which vanishes in the long-range ordered Néel and columnar phases.

2.3 Local physics of magnetization plateaux in the

Shastry-Sutherland model

In the present section we will use the HMF approach to address the physical mecha-

nism responsible for emergence of magnetization plateaux in the Shastry-Sutherland

model. It will be shown that a plateau is stabilized in a certain spin pattern, satisfying

local commensurability conditions. Results presented in this section provide evidence

in favor of a robust local physics nature of the plateaux states, and are in agreement

with recent nuclear magnetic resonance (NMR) experiments on SrCu2

(

BO3

)

2
.

2.3.1 Introduction

The interplay between quantum mechanics and the atomic lattice topology often leads

to a complex mosaic of physical phenomena in low-dimensional frustrated magnets

[65]. A prominent representative of this class of materials is the layered compound

SrCu2

(

BO3

)

2
, which recently received a lot of attention because of its fascinating

properties in an external magnetic field h, namely the emergence of magnetic plateaux

at certain fractions of the saturated magnetization Msat. The first experimental ob-

servations of the plateaux were reported in [66] for m =M/Msat = 1/8 and 1/4, and

somewhat later for m = 1/3 [67]. Subsequent NMR experiments [68, 69] revealed

spontaneous breaking of the lattice translational symmetry within the 1/8 plateau,

and also indicated that the spin superlattice persists right above this fraction [70]. The

field was reignited by the work of Sebastian et al. [71], where additional plateaux at

exotic values m = 1/9, 1/7, 1/5 and 2/9 were reported. However, direct observation

of the emerging spin superstructures remains an experimental challenge, primarily

due to the high magnetic fields (∼ 30− 50 Tesla) involved in measurements.
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Figure 2.7: (a) The SS lattice. Circles denote spins, dashed lines correspond to the
NN J coupling, double solid lines denote next-NN interactions (dimers). The sim-
plest choice of a degree of freedom which does not cut dimers is shown in black.
(b) Schematic spin profiles within plateaux. (Gray) black circles correspond to po-
larizations (anti) parallel to the field; their sizes encode the magnitude of the local
magnetic moment. Empty circles denote sites with |〈Sz

i 〉| . 10−2. The clusters used
in HMF calculations consist of dark gray dimers. Light gray dimers represent the NN
cluster. For m = 1/3, 1/4 and 1/6 dark and hatched dimers constitute the 24-spin
cluster. Thin lines indicate unit cells of the spin superlattice. (c) High magnetic field
phase diagram of the SS model for α > 1. h0(α) denotes the field after which the
first plateau (at 1/8) emerges. Fractions indicate values of m. For α ≫ 1 the triplons
(•==•) in panel(b) become fully polarized and other dimers within the clusters turn
into perfect singlets.

The nature of the magnetic states and physical mechanism leading to the plateaux

are also not yet understood. It is believed that the Heisenberg antiferromagnetic

model on a frustrated Shastry-Sutherland (SS) lattice with N sites [72] (see Fig.
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2.7(a)),

H = J
∑

〈ij〉
Si · Sj + 2Jα

∑

[ij]

Si · Sj − h
∑

i

Sz
i , (2.10)

captures the essential magnetic properties of SrCu2

(

BO3

)

2
in relatively high fields.

In Eq. (2.10) Si denotes a spin-1/2 operator at site i; the first sum is the usual

nearest-neighbor (NN) Heisenberg term, while the second one runs over dimers; J

and α > 0. This model is quasi-exactly solvable [72] for α > 1 + h/2: the GS is a

direct product of singlet dimer states, and was shown to be stable up to α ∼ 0.71-0.75

in zero field [73]. In general, it is an intractable quantum many-body problem where

approximation schemes are needed to deal with large-N systems.

All theories proposed to explain the magnetization plateaux in SrCu2

(

BO3

)

2
start

from the SS model. However, the physical mechanism stabilizing the plateau states,

their nature, and the structure of the magnetization curve are still actively debated.

Current ideas can be broadly divided into two groups. The first one advocates subtle

non-local (in the spins) correlations leading to an underlying spin structure which pre-

serves lattice symmetries [74]. It employs a mapping of the original spins to fermions

coupled to a Chern-Simons gauge field, and then performs a Hartree-Fock decoupling.

In this way the qualitative shape of the SrCu2

(

BO3

)

2
magnetization curve was repro-

duced in high fields, but the lowest plateau at 1/8 was missing. Later this non-local

mean-field approach was extended to include inhomogeneous phases [71], and it was

argued that the plateaux correspond to stripe states with broken lattice symmetries.

Remarkably the length scale ξ associated with the emerging spin superlattice was

found to be ξ ∼ 100 lattice spacings. The second group contends that the magnetiza-

tion process can be described in terms of polarized dimers (triplons), which propagate

in the background of singlet dimers [73, 75]. They developed effective hard-core bo-

son models (truncating the original dimer Hilbert space), solved by perturbative [76]

or contractor renormalization (CORE) [77] techniques, and found that the plateaux

48



states correspond to crystal phases with ξ ∼ 10 lattice constants.

Such diversity of theoretical predictions demands further investigation. Here we

use the HMF method presented in the previous section in an attempt to clarify the

nature and physical mechanism, responsible for the emergence of magnetic plateaux in

the SS model. Unlike previous calculations we deal directly with the SS Hamiltonian

(2.10) (not with effective Hamiltonians as in [76, 77]) and combine exact diagonal-

ization data with a simple and controlled approximation for the GS wavefunction.

For instance, we do not discard the M = 0 dimer triplet states necessary for the

propagation of a triplon. We focus on higher-lying fractions whose existence has been

confirmed experimentally. Our conclusions support the local physics nature of the

plateau states. In particular, we explicitly demonstrate how to construct those ro-

bust states based on a set of certain commensurability rules. Our results are also in

agreement with the interpretation of NMR measurements [68].

2.3.2 HMF approach for the SS model

Application of the HMF method to the SS model starts by recalling that phases

within plateaux break the lattice translational invariance. Therefore the best solution

will be obtained if the cluster degree of freedom matches the unit cell of the spin

superstructure. In terms of the coarse-grained cluster variables the SS model (2.10)

can be written in a form similar to Eq. (2.3):

H =
∑

i

ǫa(α, h)γ
†
iaγia +

∑

〈ij〉σ

(

Hσ
int

)a′b′

ab
γ†ia′γ

†
jb′γiaγjb, (2.11)

where i denotes sites in the coarse-grained lattice, ǫa are exact cluster eigenenergies,

and the symbol 〈ij〉σ, with σ = 1, 2, . . ., indicates pairs of neighboring blocks cou-

pled by the same number of J-links. The operators γ†ia which create a particular

state |a〉 of a Nq-spin cluster are SU
(

2Nq
)

Schwinger bosons (see the discussion after
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Eq. (2.3)). Since the original SS Hamiltonian involves only two-spin interactions, in

the new representation there will be only two-boson scattering processes: the corre-

sponding matrix elements are denoted by
(

Hσ
int

)a′b′

ab
. For each cluster size (Nq) and

magnetization

m =
1

Msat

∑

i

〈

Sz
i

〉

=
2

N

∑

i

〈

Sz
i

〉

=
2

Nq

Nq
∑

j=1

〈

Sz
j

〉

,

we determine the lowest-energy configuration (i.e. the cluster shape and correspond-

ing tiling of the lattice). By virtue of above argument, this solution will have the

“right” symmetry. Performing this operation for successive values of Nq up to the

largest one that can be handled, we obtain a set of magnetization plateaux together

with their corresponding spin profiles. It follows that a particular choice of coarse

graining is critical for the success of this programme. One should recall that the

experimental value for α in SrCu2

(

BO3

)

2
is 0.74-0.84, i.e. the intradimer coupling

seems to be “more relevant” than the interdimer one. Therefore it is natural to con-

sider only those clusters, which contain an integer number of α-links. This constraint

turns out to be quite severe. It follows that the degree of freedom must also contain

an integer number of “minimal” blocks, shown in Fig. 2.7(a) in black: otherwise the

tiling of the lattice will not be complete. These requirements comprise a set of local

commensurability conditions necessary to stabilize a plateau.

Similar to the J1-J2 model, discussed in the previous section, we will use the

variational GS wavefunction of the form (2.4): |ψ0〉 =
∏

i

(

Raγ
†
ia

)

|0〉, and solve the

resulting Hartree-Fock equation. In this manner one obtains the approximate GS

energy E0 as a function of the magnetic field h.
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Table 2.1: Representative values of the GS energy parameter ε0. Numbers in paren-
thesis denote the size of a cluster, Nq.

α 1/8 1/6 1/5 1/4 1/3

1.1 0.72056
0.68561 (24)

0.65678
0.61291 (24) 0.53553 (24)

0.68318 (12) 0.61121 (16) 0.53212 (12)

2.0 1.26734
1.18978 (24)

1.12758
1.03384 (24) 0.87689 (24)

1.18937 (12) 1.03336 (16) 0.87569 (12)

2.3.3 Results

To guarantee that our results reduce to the exact solution in the limit h → 0, we

mainly consider the region α & 1. The simplest degree of freedom, consisting of 4

spins, is shown in Fig. 2.7(a). Using this cluster in our HMF scheme one obtains

stable plateaux only at m = 1/2 and m = 1. Clearly, larger blocks are necessary to

stabilize plateaux at lower magnetization fractions. Here, we consider cluster sizes

Nq = 4k with k = 2 . . . 6 and discuss only plateaux at 1/3, 1/4, 1/5, 1/6 and 1/8,

supported in minimal clusters of Nq = 12, 8, 20, 12 and 16 spins, respectively (Msat =

Nq/2). In Fig. 2.7(b) we present local spin profiles corresponding to the lowest

energy configurations for each of these fractions. Comparison of patterns for different

plateaux shows that states 1/n with n even are characterized by one polarized dimer

per unit cell, while cells of odd-n states have two triplons. For a given plateau there

typically exist several possible coarse-graining scenarios, characterized by different

clusters and tessellations of the SS lattice, but identical unit cells. Although these

configurations have slightly different energies, their existence provides an important

check for robustness of local correlations stabilizing the plateau states. The patterns

for all fractions except 1/5 are similar to those obtained in [68, 76]. Strictly speaking,

the profiles in Fig. 2.7(b) are well defined only for large values of α > 1 and quickly

smear out with decreasing α. This effect is difficult to capture within the effective

model calculations, like [76].
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A clear advantage of the HMF approach, compared to previous works, is its ability

to compute GS energies of the original SS model. Within each plateau we have:

E0(h)/N = −ε0 −mh/2. The parameter ε0 is presented in Tab. 2.1 for some values

of α and different cluster sizes. In order to address finite-size effects, in Fig. 2.7(c) we

present the high magnetic field phase diagram of the SS model for α > 1. All fractions

were calculated using the largest possible cluster. Due to the insulating nature of the

plateau states, the finite-size corrections are not expected to significantly affect their

stability. For instance, for m = 1/6 the energy difference between 12- and 24-spin

clusters is only ∼ 5% of its width for the values of α shown in Tab. 2.1. This

observation serves as additional evidence in favor of a universal physical mechanism

leading to the plateaux.

The HMF method does not involve truncation of the dimer Hilbert space. In

order to understand consequences of such approximation, we computed ε0 for different

plateaux, ignoring the dimer state |↓↓〉. The resulting absolute error is of the same

order of magnitude as finite size effects and plateau widths (cf. Table 2.1), which

leads to a sizable change in the relative stability of the plateaux. For example, at

α = 1.1 the average error is 3 · 10−3J , and the lower boundary of the 1/8 state shifts

by 0.04J . Therefore, conclusions of the effective boson model calculations, which

employ a similar truncation, should generally be taken with caution.

2.3.4 Discussion

Although the effective model approach does yield a sequence of plateaux, their under-

standing remains incomplete. Our work addresses this issue by focusing on the nature

and correlations of the magnetic plateau states. In particular, the analysis presented

above allows the formulation of a set of universal rules leading to well-defined spin

patterns (Fig. 2.7(b)), which can be probed, e.g. by polarized neutron scattering.

These rules define a hierarchy of variational plateau wavefunctions and constitute a
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central prediction of this work. For a robust state to emerge at a given magnetization

fraction m, the commensurability conditions that have to be fulfilled are:

• A cluster degree of freedom must contain an even number of dimers;

• The SS lattice must be tessellated completely with these clusters;

• The size of the cluster (unit cell), Nq, must allow the plateau state at m, imply-

ing Nq = 2M/m withM = 1, . . . , Nq/2 chosen in a way such that Nq is divisible

by four;

• Number of triplons (•==•) per cluster is M and its shape must be such that

each triplon is surrounded by two dimers of the type •==•, within this cluster.

Application of these constraints leaves us with an essentially combinatorial problem

of actually determining the symmetry and periodicity of the spin superstructure.

There also exists a number of concrete discrepancies between our work and recent

publications [76, 77], which nevertheless support our general conclusion regarding the

local nature of the plateau states. First, the experimentally observed plateaux at 1/4

and 1/8, which we found to be quite robust, were claimed in [76] to be unstable.

However, the magnetization profile presented in Fig. 2.7(b) for m = 1/8, which

persists at α = 0.787, adequate for SrCu2

(

BO3

)

2
, is consistent with interpretation

of the available NMR data [68, 69] for this material. We believe that the origin of

these states is purely magnetic and no additional interactions beyond the SS model

are required, in contradiction with the claim of [76]. Our results also yield a stable

1/5 plateau, contrary to conclusions of Refs. [76, 77]. We note that this fraction was

observed in torque measurements of [71], however, their proposed spin superlattice

differs dramatically from the one predicted in our Fig. 2.7(b). Another distinction

concerns the robustness of the 1/6 plateau advocated in [76], which, although present

in our calculation, has a significantly smaller relative width (see the discussion above).
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Other fractions at 1/9, 2/9 and 2/15, observed in [76] and [77], can also be obtained

within our approach, but this requires significantly larger clusters than the ones used

here. By virtue of our commensurability arguments, we expect the plateaux at 1/9

and 2/9 to emerge in degrees of freedom containing at least 36 spins, while the 2/15

fraction will be stabilized in a 60-spin cluster.

Finally we note that the precise shape of the magnetization curve (the relative

energy stability of different plateaux) is quite sensitive to the value of α (i.e. the

particular compound) and, most importantly, since there is no exact solution of the

SS model at high fields, it depends on a particular approximation scheme. Other

physical interactions present in the real materials and not included in the SS model

may also add to this uncertainty.

2.4 Non-frustrated systems: Phase diagram of the

Heisenberg antiferromagnet with four-spin ex-

change interactions

In this section we study the quantum phase diagram of the square-lattice Heisenberg

antiferromagnet with a subset of four-spin ring exchange interactions (the so-called

J-Q model) using the HMF method, discussed in Sec. 2.2. It will be shown that the

model exhibits a transition between a Néel state and a quantum paramagnetic phase

characterized by broken translational invariance. This non-magnetic phase preserves

the lattice rotational symmetry and has a correlated plaquette nature.

2.4.1 Introduction

The J-Q model describes a non-frustrated spin-1/2 antiferromagnet (AF) with multi-

spin exchange interactions. This toy model was proposed by Sandvik in [52] and later
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studied by other authors [78, 79] in an attempt to provide numerical support for the

hypothesis of deconfined quantum criticality [48]. This theory, already mentioned in

the Introduction to Sec. 2.2, predicts the existence of a class of systems whose critical

behavior lies outside the scope of the Landau theory of phase transitions [49]. Crit-

ical points in these systems are characterized by the deconfinement of fractionalized

excitations, parameterizing the original degrees of freedom (e.g. spins), which occurs

right at the transition. It was observed that this scenario can in principle be realized

in spin systems which exhibit a second-order phase transition point characterized by

the simultaneous breakdown of a continuous (e.g. spin SU(2)) and a discrete (e.g.

lattice) symmetries, in such a way that symmetry groups on opposite sides of the

transition are not group-subgroup related. Such critical points cannot be described

in the framework of Landau’s theory. According to the Quantum Monte Carlo (QMC)

simulations presented in [52, 78, 79], the phase transition in the J-Q model indeed is

of the deconfined type.

The J-Q model is defined by the Hamiltonian:

H = J
∑

〈ij〉
SiSj −Q

∑

〈ijkl〉

(

SiSj −
1

4

)(

SkSl −
1

4

)

,

where J and Q > 0, indices i, j, . . . denote sites in a 2D square lattice and Si are

spin-1/2 operators. The first summation extends over bonds (nearest neighbor sites).

The second term contains two sums over plaquettes (sites of the dual lattice): first,

(ij) and (kl) denote parallel horizontal links of the plaquette, and then (ik) and (jl)

correspond to parallel vertical bonds. It was concluded [52] that there exists a critical

point at Qc/J ∼ 25 separating the antiferromagnetic phase from a valence-bond solid

(VBS) state, whose nature is, strictly speaking, unclear [52] but the calculations

suggested a columnar (dimer) order in this paramagnetic region.

In this section we study the phase diagram of the J-Q model using the HMF
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technique. As we already mentioned in Sec. 2.2 this approach artificially breaks

the lattice translational symmetry and introduces a non-physical correlation length,

producing a gap in the low-energy excitation spectrum. In order to describe gapless

Goldstone modes in an ordered state (e.g. magnons in the AF phase) one must

include fluctuations around the HMF GS, as we demonstrated in the case of the J1-

J2 model. However, the large-Q phase in the J-Q model is known to be gapped.

Therefore, errors introduced by the HMF approximation should not lead to a severe

underestimation of quantum fluctuations close to the phase transition point.

2.4.2 Coarse graining and HMF approximation

For our purposes it is convenient to separate the two and four spin terms in the J-Q

Hamiltonian:

H = −2NQ

16
+

(

J +
Q

2

)

∑

〈ij〉
SiSj −Q

∑

〈ijkl〉

(

SiSj)(SkSl

)

. (2.12)

A satisfactory coarse graining procedure should partition the lattice into spin

clusters (containing Nq sites) that explicitly preserve symmetries of the problem. In

particular, the J-Q Hamiltonian is invariant under SU(2) rotations and transforma-

tions from the lattice point group C4v [4]. Therefore, we will consider only symmetry

preserving degrees of freedom: (i) plaquettes (2×2 spin clusters) and (ii) 4×4 blocks.

In the Schwinder boson representation, the J-Q model will have the form of Eq.

(2.3) with the addition of the four-boson interactions, which correspond to the four-

spin terms in (2.12):

H =
∑

i

(

H�

)

a′a
γ†ia′γia +

∑

〈ij〉

(

H2
int

)a′1a
′
2

a1a2
γ†ia′1

γ†ja′2
γia1γja2+ (2.13)

+
∑

〈i1i2i3i4〉h

(

H4h
int

)a′1a
′
2;a

′
3a

′
4

a1a2;a3a4

4
∏

µ=1

γ†iµa′µγiµaµ +
∑

〈i1i2i3i4〉v

(

H4v
int

)a′1a
′
3;a

′
2a

′
4

a1a3;a2a4

4
∏

µ=1

γ†iµa′µγiµaµ ,
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where a, a′, . . . label states in the Hilbert space of a cluster, i, j, . . . denote sites in the

coarse grained lattice, and summations are assumed over all repeated indices. The

two-body interaction H2
int is given by Eq. (2.2) with σ = 1. The last line describes

the correlated four-boson scattering. The superscript h indicates that i1i2 and i3i4

are horizontal links of a plaquette, and similarly v denotes the case when i1i3 and i2i4

are vertical links of the same plaquette.

We will investigate the phase diagram of the J-Q model using the variational GS

of Eq. (2.4). It is important to emphasize that although the coarse graining procedure

preserves symmetries of the Hamiltonian (2.12), some of them can be spontaneously

broken at the mean-field level as a result of self-consistency. In particular, the colum-

nar dimer state is contained in the wavefunction (2.4) although it never appears as a

stable solution.

We have explicitly separated the four-boson interaction in the Hamiltonian (2.13)

into horizontal and vertical link contributions. This distinction is important because

these two terms must be properly symmetrized to obey bosonic statistics. The term

H4h
int has to be symmetrized only with respect to indices in the same group, and groups

as a whole (groups are separated by semicolons), i.e. one needs to take into account

only the following permutations: (1 ↔ 2), (3 ↔ 4) and simultaneously (1 ↔ 3,

2 ↔ 4). Analogously, in the term H4v
int only the permutations (1 ↔ 3), (2 ↔ 4) and

(1 ↔ 2, 3 ↔ 4) should be accounted for.

The problem then reduces to minimization of the energy functional:

NE0[R]

Nq

= (H�)a′aRa′Ra +
(

H2
int

)a′1a
′
2

a1a2

2
∏

ν=1

Ra′νRaν +
(

H4h
int +H4v

int

)a′1a
′
2;a

′
3a

′
4

a1a2;a3a4

4
∏

ν=1

Ra′νRaν

(2.14)

under the constraint RaRa = 1, which leads to the self-consistent eigenvalue equation
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(

HHF

)

ab
Rb = µRa with the Hartree-Fock Hamiltonian:

(

HHF

)

ab
=

(

H�

)

ab
+ 2

(

H2
int

)a′1b

a1a
Ra′

1
Ra1 + 4

(

H4h
int +H4v

int

)a′1a
′
2a

′
3b

a1a2a3a

3
∏

µ=1

Ra′µRaµ .

Once the amplitude Ra is determined, the ground state energy (GSE) can be com-

puted using Eq. (2.14). Besides the GSE we will also be interested in computing the

staggered magnetization Mz (see first line in Eq. (2.8)), and the two-component VBS

“order parameter” [80]:

ReΨ =
1

N

∑

x

(−1)xSx+exSx; ImΨ =
1

N

∑

x

(−1)ySx+eySx,

which allows us to characterize point symmetries of a state.

In the rest of this section we will sketch the HMF calculation of E0, Mz and Ψ for

the case of plaquettes, and only present final expressions for the 4 × 4 clusters. For

details regarding this latter case see Sec. 2.2 and Appendices A and B at the end of

this chapter. From now on we shall put J ≡ 1.

(i) The plaquette degree of freedom

We start by considering the simplest way to cover the lattice – with plaquettes, as

shown in Fig. 2.8(a).The Hamiltonian for an isolated plaquette has the form:

H� =

(

1 +
Q

2

)

(S1 + S4)(S2 + S3)−Q
[

(S1S2)(S3S4) + (S1S3)(S2S4)
]

. (2.15)

The interaction of this plaquette with the rest of the system can be conveniently

partitioned according to (2.13) as: Hint = H2
int + H4h

int + H4v
int, where appropriately
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Figure 2.8: (a) The plaquette lattice. Thick lines denote interactions J + Q/2. The
circles indicate four-spin terms of strength Q in the Hamiltonian (2.12). Small-sized
numbers label spins within a plaquette, while the larger ones label plaquettes. (b)
Connectivity of the lattice formed by 4× 4 spin clusters. Small circles indicate spins.
Bold numbers label the 4× 4 clusters, while thin ones denote plaquettes.

symmetrized individual terms are given by:

H2
int =

1 +Q/2

2

[

(S11 + S14)(S22 + S23) + (S12 + S13)(S21 + S24)
]

−

− Q

2

[

(S11S12)(S23S24) + (S11S23)(S12S24) + (S12S14)(S21S23)+

+ (S12S21)(S14S23) + (S13S14)(S21S22) + (S13S21)(S14S22)+

+ (S11S22)(S13S24) + (S11S13)(S22S24)
]

and

H4h
int =− Q

8

[

(S14S23 + S24S13)(S32S41 + S31S42)+

+ (S34S43 + S44S33)(S12S21 + S11S22)
]

;

H4v
int =− Q

8

[

(S14S32 + S12S34)(S23S41 + S21S43)+

+ (S24S42 + S22S44)(S13S31 + S11S33)
]

.
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Figure 2.9: (a) Main panel: GSE as a function of Q/J for plaquettes [case (i)] and
4×4 spin clusters [case (ii)]. Inset: contributions to the GSE from the J and Q terms
in (2.12) for a 4× 4 spin cluster with periodic boundary conditions; the unimportant
term −NQ/8 is omitted. (b) Second-order derivative d2E0/NdQ

2 (main panel) as a
function of Q/J for cases (i) and (ii). The discontinuity at Q/J ∼ 1.61 (2 × 2) and
Q/J ∼ 2.0 (4 × 4) indicates a second-order phase transition point. The inset shows
the extrapolation of the jump g = Jd2E0/NdQ

2|Qc+0
Qc−0 to Nq → ∞.

It is convenient to work in the basis which diagonalizes the Q-independent part

of H� in Eq. (2.15) as done in Sec. 2.2. The matrix elements, which appear in Eq.

(2.14),

(

H2
int

)a′1a
′
2

a1a2
≡ 〈a′1a′2|H2

int|a1a2〉;
(

H4h,v
int

)a′1a
′
2;a

′
3a

′
4

a1a2;a3a4
≡ 〈a′1a′2; a′3a′4|H4h,v

int |a1a2; a3a4〉,

can now be computed using the angular momentum addition theorems. The staggered

magnetization (along the z-axis) within a plaquette can be computed using Eq. (2.7),

while the function Ψ can be written in the plaquette representation as:

ReΨ =
1

N

∑

i

[

Si1Si2 + Si3Si4

]

− 1

N

∑

i

[

Si2Si+x̂,1 + Si4Si+x̂,3

]

; (2.16)

ImΨ =
1

N

∑

i

[

Si1Si3 + Si2Si4

]

− 1

N

∑

i

[

Si3Si+ŷ,1 + Si4Si+ŷ,2

]

.

In these equations indices i and x̂ denote sites and basis vectors of the plaquette

lattice.
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(ii) 4× 4 spin clusters

The coarse grained lattice obtained by choosing the 4 × 4 cluster as a degree of

freedom is shown in Fig. 2.8(b). Each spin operator carries three indices: label

of a cluster, label of a plaquette within this cluster, and the position within this

plaquette. Writing down the cluster self-energy and the inter-cluster interactions

is a straightforward but tedious task, which can be accomplished along the lines

presented in the previous subsection. Here we give only the final expression for Ψ;

spin expectation values, necessary for the staggered magnetization, are presented in

Appendix A. The function Ψ can be written as:

ReΨ =
1

N

∑

i

(

Si11Si12 + Si13Si14 + Si31Si32 + Si33Si34 + Si21Si22 + Si23Si24+

+ Si41Si42 + Si43Si44 − Si12Si21 − Si14Si23 − Si32Si41 − Si34Si43

)

−

− 1

N

∑

i

[

Si22Si+x̂,11 + Si24Si+x̂,13 + Si42Si+x̂,31 + Si44Si+x̂,33

]

; (2.17)

ImΨ =
1

N

∑

i

(

Si11Si13 + Si12Si14 + Si21Si23 + Si22Si24 + Si31Si33 + Si32Si34+

+ Si41Si43 + Si42Si44 − Si13Si31 − Si14Si32 − Si23Si41 − Si24Si42

)

−

− 1

N

∑

i

[

Si33Si+ŷ,11 + Si34Si+ŷ,12 + Si43Si+ŷ,21 + Si44Si+ŷ,22

]

.

2.4.3 Results

We can now proceed with solution of the HMF equations. The physical quantities that

we want to compute in the first place are the GSE and the staggered magnetization.

In Fig. 2.9(a) we present GSE for both cluster sizes considered above. All energies

monotonically decrease with increasing Q/J as a consequence of the negative sign in

front of the last term in Eq. (2.12). At some critical value of Q = Qc the system

undergoes a phase transition from the Néel state at small Q to a spin-disordered state

at Q > Qc. This transition can be seen either from the second derivative of the GSE,
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Figure 2.10: (a) Staggered magnetization (main panel) as a function of Q/J . The
values of Qc are: Qc/J = 1.61 for case (i) and Qc/J = 2.00 for case (ii). The inset
shows the scaling of Qc. (b) The “order parameter” Ψ for the two cases, studied in
this paper. Notice the coincidence of curves for ReΨ and ImΨ. For Q > Qc this
implies the plaquette nature of the quantum paramagnetic state.

d2E0/NdQ
2 (shown in Fig. 2.9(b)) or from the staggered magnetization as a function

of Q/J (presented in Fig. 2.10(a)). Using these plots one obtains the numerical

values Qc/J = 1.61 for plaquettes and Qc/J = 2.00 for 4 × 4 clusters. Although the

jump g = Jd2E0/NdQ
2|Qc+0

Qc−0 is numerically small, it remains finite: g → 0.016, if

extrapolated to the thermodynamic limit, based on these two points (see the inset

to Fig. 2.9(b)). The finite-size scaling of the critical point itself, presented in the

inset in Fig. 2.10(a), shows that limNq→∞Qc/J = 2.13. We note that due to few

data points, the finite-size scalings presented here are qualitative, and are intended

to provide only an estimate for the extrapolated quantities in the thermodynamic

limit.

Let us now discuss the symmetries of the various phases. The AF state, which

occurs for Q < Qc, is known to preserve the lattice rotational symmetry C4, and

spontaneously breaks the spin SU(2) symmetry. The nature of the paramagnetic

phase stabilized for Q > Qc can be unveiled by computing expectation values of the

function Ψ given by Eqs. (2.16) and (2.17) for cases (i) and (ii), respectively. Although

Ψ is an integral quantity, it is sufficient for the purpose of discriminating between
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plaquettized and dimerized ground states. Namely, a plaquette phase preserves the

four-fold lattice rotational symmetry, meaning that

ReΨ = ImΨ, (2.18)

while in a dimerized state this equality does not hold. In Fig. 2.10(b) we present plots

of ReΨ and ImΨ. The equality (2.18) is satisfied throughout the phase diagram. This

fact is not surprising in the antiferromagnetic phase, but in the paramagnetic region it

presents a strong evidence against any type of dimerized ground states. Although such

states were allowed in the process of minimization, the C4-symmetric states always

had lower energy. In fact, the ground state in the non-magnetic region is a plaquette

paramagnet, with each plaquette being in its singlet ground state. However, due to

the tensor nature of interactions in (2.12) these plaquettes are coupled, contrary to

the case of the J1-J2 model. Finally we note that extrapolation to Nq → ∞ shows

that ReΨ, ImΨ → −0.04, suggesting that the lattice translational invariance is being

recovered in the thermodynamic limit.

2.4.4 Discussion

In agreement with previous works [52, 78, 79] our calculations demonstrate that the

Hamiltonian (2.12) exhibits a phase transition point separating the Néel-ordered state

from a paramagnetic phase with broken translational invariance. Besides establish-

ing the existence of a phase transition, we were also able to unveil the nature of

the paramagnetic phase and show that a correlated plaquette state is favored over

a columnar dimer state which, although not conclusively, seems to be preferred in

previous calculations [52]. These findings are summarized in the J > 0 part in Fig.

2.11.

However, despite qualitative agreement, there is a quantitative discrepancy in the
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J > 0J < 0

Qc/JQ0/J Q/J0

AF PPPP FM

Figure 2.11: HMF phase diagram of the J-Q model. The AF phase with broken
SU(2) symmetry and the singlet paramagnetic state are separated by a second-order
quantum phase transition atQc/J ≈ 2. The pointQ0/J ≈ −1.3 indicates a first-order
transition between the FM and singlet phases. The non-magnetic phase breaks the
lattice translational symmetry and is a plaquette paramagnet (PP). The PP regions
at J < 0 and J > 0 are adiabatically connected by changing J (Q/J) through zero
(infinity), i.e. there is no direct FM-to-AF transition.

numerical value of Qc. The value obtained in the present paper, Qc/J ∼ 2 is much

smaller than the one presented in [52] (Qc/J ∼ 25). Although we cannot provide a

rigorous explanation for this discrepancy, we would like to make the following qual-

itative remark to support our result. The variational wavefunction (2.4), physically

being a low-density ansatz, generally leads to an underestimation of the four-boson

scattering terms in Eq. (2.13). In order to understand how significant this error is and

check that the results presented in Figs. 2.9 and 2.10 are reasonable, we used data

from the exact diagonalization of 4 × 4 spin clusters to compare magnitudes of the

terms proportional to J and Q, in Eq. (2.12). On physical grounds one would expect

a phase transition to occur when these terms become comparable. The inset in Fig.

2.9(a) presents the two contributions and their dependence on Q/J . Of course, the

crossing point at Q/J ∼ 1 does not determine the critical value Qc, but it provides

a clue on where the phase transition may occur. Since the system is gapped in the

paramagnetic phase, one can argue that the size 4 × 4 is large enough to describe

the thermodynamic limit. Indeed, QMC data for Q/J = 10 indicates that the GSE
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converges very rapidly with increasing system size [81]. Also, QMC calculations, per-

formed [81] for systems up to 16× 16 sites, indicate that the magnitude of the above

crossing point stays of order unity, even for large system sizes.

Our conclusions raise another important question regarding the nature of the

phase transition. We find it to be of the Landau type. Although finite-size scaling

of the GSE second derivative displays a finite jump as Nq → ∞, there is no way

to rigorously prove that it remains finite in the thermodynamic limit. Thus, the

possibility of a first order transition at Qc (claimed in [82]) cannot be completely

excluded.

So far we have studied the physically interesting AF case J > 0. However, the

ferromagnetic (FM) situation (J < 0) can be handled in complete analogy. The

quantum phase transition, separating the FM and singlet phases is first-order – it

manifests itself as a crossing of GSE of the two phases – and occurs3 at Q0/J ≈ −1.3.

Thus, the paramagnetic phase displays two instabilities, ferro- and antiferromagnetic.

The complete phase diagram of the J-Q model is shown in Fig. 2.11.

2.5 Appendix A: Superplaquette degree of free-

dom for the J1-J2 model

In this Appendix we present details of the HMF calculation which uses the 4 × 4

superplaquette (shown in Fig. 2.12) as an elementary degree of freedom. It turns out

that the full angular momentum basis is inconvenient, so we use the 2× 2 plaquette

product states in order to perform the mean-field calculations. Each spin is charac-

3Because this transition is first-order, its location is only weakly sensitive to the system size. The
values of the transition point, Q0, obtained from exact diagonalization (ED) and HMF agree very
well:

Q0/J 2× 2 4× 4

ED -1.0 -1.19
HMF -1.32 -1.26
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terized by two indices: the plaquette number i = 1 . . . 4 and an index n = 1 . . . 4,

which specifies a vertex in the plaquette. The M = 0 sector of the superplaquette

Hilbert space is spanned by the states:

|A〉 =
4
∏′

i=1

|ai〉,

where prime indicates the constraint
∑4

i=1Mi = 0. Using these states, we can write

down matrix elements, like 〈a′1 . . . a′4|SinSjn′|a1 . . . a4〉, in the compact form:

〈A′|SinSjn′|A〉 =
(

σnn′

)a′ia
′
j

aiaj

∏

l 6=i,j

δa′
l
al (2.19)

with the symmetric matrices
(

σnm
)a′ia

′
j

aiaj
=

(

σmn

)a′ja
′
i

ajai
=

(

σnm
)aiaj

a′ia
′
j

defined as:

(

σnn′

)a′ia
′
j

aiaj
=
∑

K,M

(

−1
)Li+L′

j+K〈L′iM ′iL′jM ′j|L′iL′jKM〉〈LiMiLjMj |LiLjKM〉×

×











L′i L′j K

Lj Li 1











〈λ′i‖Sn‖λi〉〈λ′j‖Sn′‖λj〉,

The Hamiltonian of a single superplaquette consists of two parts: a diagonal one

involving only 2× 2 plaquette contributions, and a non-diagonal part which accounts

for the plaquette interactions. The former is written down straightforwardly as a

matrix:
(

Hd

)

A′A
=

∏

i

δa′iai
∑

i

ǫai ,

where ǫa is the plaquette self-energy, Eq. (2.1). The non-diagonal part has the
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operator form:

Hnd = J1
[

(S14 + S41)(S23 + S32) + S12S21 + S13S31 + S34S43 + S24S42

]

+

+ J2
[

S12S23 + S14S21 + S23S42 + S41S24 + S34S41 + S32S43+

+ S31S14 + S13S32 + S14S41 + S32S23

]

.

Let us now proceed with the plaquette interaction terms. Each superplaquette has

4 nearest and 4 next-nearest neighbors. Within each neighboring superplaquette we

enumerate 2× 2 plaquettes by the indices 5, 6, 7, 8, so that 1 → 5, 2 → 6, 3 → 7 and

4 → 8. Enumeration of vertices within a plaquette stays the same. In this manner

we have the symmetrized NN,

H1 =
J1
4

[

S11(S73 + S62) + S12S74 + S13S64 + S31S82 + S34S52 + S33(S84 + S51)+

+ S21S83 + S24S53 + S22(S84 + S51) + S43S61 + S42S71 + S44(S73 + S62)
]

+

+
J2
4

[

S11(S74 + S64) + S12(S73 + S83) + S13(S62 + S82) + S21(S74 + S84)

+ S22(S53 + S83) + S24(S51 + S71) + S31(S84 + S64) + S33(S82 + S52)+

+ S34(S51 + S61) + S42(S73 + S53) + S43(S62 + S52) + S44(S71 + S61)
]

,

and NNN,

H2 =
J2
4

[

S11S84 + S22S73 + S33S62 + S44S51

]

,

superplaquette interactions. Using Eq. (2.19), one can easily construct matrix ele-

ments of Hnd and H1,2, which are required to obtain the HF equation of the type

(2.5).

Having computed the single-superplaquette ground state wavefunction R0
A =
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Figure 2.12: The 4 × 4 superplaquette degree of freedom. Each spin carries two
indices: a 2× 2 plaquette number and a coordinate within this plaquette.

R0
a1a2a3a4 , we can use it to determine the spin polarizations:

〈HF|Sz
1n|HF〉 =

(

Sz
n

)

a′1a1
R0

a′1a2a3a4
R0

a1a2a3a4 ;

...

〈HF|Sz
4n|HF〉 =

(

Sz
n

)

a′4a4
R0

a1a2a3a′4
R0

a1a2a3a4 ,

where
(

Sz
n

)

a′a
is given by Eq. (2.7).

2.6 Appendix B: Fluctuation corrections to HMF

theory of the J1-J2 model

In this Appendix we discuss fluctuation corrections to the HMF theory presented in

Sec. 2.2. A natural way to achieve this goal is to perform a superfluid-type mean-field

approximation. As a result one can obtain the collective spectrum and corrections

to the GSE and magnetization. The structure of the superfluid mean-field is similar
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to the Fetter-Bogoliubov approach to inhomogeneous Bose liquids [59]. Although we

shall present results only for the 2× 2 plaquette degree of freedom, it can equally be

applied to the 4× 4 superplaquette case.

2.6.1 General formulation

Let us return to the original Schwinger boson Hamiltonian (2.3) and explicitly sepa-

rate out the condensate mode in the γia-operators: γia = ga + βia. The condensation

will occur in a certain superposition of the single-plaquette states. The real-valued

multiplet ga plays the role of a condensate wavefunction (CWF) [59]. Here it is cho-

sen to be spatially homogeneous, but inhomogeneous phases can also be included.

The CWF is normalized to the condensate fraction
∑

a g
2
a = n0. The non-condensate

bosonic operators βia describe fluctuation corrections to the HF solution. If they are

neglected we naturally return to the results of Sec. 2.2.

The superfluid mean-field approximation amounts to enforcing the Schwinger bo-

son constraint on average:

n0 +
1

N�

∑

i,a

〈β†iaβia〉 = 1,

neglecting fluctuations in the condensate channel, and retaining only terms quadratic

in β in the Hamiltonian (2.3):

H = N�

[

1

2

(

µn0 +
∑

a

ǫag
2
a

)

− µn0

]

+ (2.20)

+
∑

i,a

(ǫa − µ)β†iaβia + 4
∑

i,σ

(

Hσ
int

)a′1a
′
2

a1a2
ga′2ga2β

†
ia′1
βia1+

+
∑

σ,〈ij〉σ

(

Hσ
int

)a′1a
′
2

a1a2

[

ga′1ga′2(β
†
ia1
β†ja2 + βia1βja2) + 2ga1ga′2β

†
ia′1
βja2

]

,

where 〈ij〉σ is defined after Eq. (2.3) and matrix elements of Hσ
int are given by Eq.
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Figure 2.13: (a) Ground state energy for the self-consistent solution (main panel) and
after the first iteration (inset). The absence of points in the main panel around Jc1

2 is
due to bad convergence in the simulation. (b) Self-consistently computed staggered
magnetization,Mstag, for J2 ≤ Jc1

2 and columnar magnetization along the x-direction,
Mcol(x), for J2 ≥ Jc2

2 .

(2.2).

The CWF ga is determined by the HF equation (2.5) with εn replaced with the

chemical potential µ (the Gross-Pitaevskii equation). Eq. (2.5) defines the chemical

potential4 and guarantees the disappearance of linear terms in β from the Hamiltonian

of Eq. (2.20). Quadratic terms in Eq. (2.20) represent fluctuation corrections to the

HF results and constitute the focus of our analysis below.

The next step is to transform the quadratic part (H2) of the Hamiltonian in Eq.

(2.20) into momentum space:

H2 =
∑

k,a

(ǫa − µ)β†kaβka +
∑

k,σ

(

Hσ
int

)a′1a
′
2

a1a2

{

Θσ
k

[

ga′1ga′2
(

β†ka1β
†
−ka2 + βka1βka2

)

+

+ 2ga1ga′2β
†
ka′1
βka2

]

+ 4ga′2ga2β
†
ka′1
βka1

}

,

where Θσ
k = (cos kx + cos ky, 2 cos kx cos ky) and k is defined within the plaquette

Brillouin zone (i.e. there are N� k-states). This Hamiltonian can be diagonalized by

4It is clear that when n0 = 1, ga = R0
a and µ = ε0.
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Figure 2.14: (a) Condensate fraction for the self-consistent solution (main panel) and
after the first iteration (inset). Notice the shift of quantum phase transition points
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the Bogoliubov transformation:

αkν =
∑

a

(

uνkaβka − vνkaβ
†
−ka

)

; α†−kν =
∑

a

(

−vνkaβka + uνkaβ
†
−ka

)

,

to a new set of bosonic operators αkν, which represent quasiparticle excitations and

annihilate the new ground state: αkν|Ψ0〉 = 0. Of course, only positive quasiparticle

energies, labeled by ν, have physical meaning. However, in order to obtain closure

relations for the wavefunction
(

uνka, v
ν
ka

)

(which is, obviously, even in k), we need to

include zero-energy eigenvectors as well [83].

This completeness relation has the form (valid for all wavevectors):

∑

ν

(

uνkau
ν
kb − vνkav

ν
kb

)

= δab;
∑

ν

(

uνkav
ν
kb − vνkau

ν
kb

)

= 0.

The amplitudes uνa(k) and v
ν
a(k) are determined from Bogoliubov equations:

UN
ab(k)u

ν
kb + UA

ab(k)v
ν
kb =ων(k)u

ν
ka;

UA
ab(k)u

ν
kb + UN

ab(k)v
ν
kb =− ων(k)v

ν
ka, (2.21)
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where we have introduced symmetric matrices:

UN
ab(k) =

1

2

(

ǫa − µ
)

δab +
∑

σ

(

Hσ
int

)aa1

a2b
Θσ

kga1ga2 + 2
∑

σ

(

Hσ
int

)aa1

ba2
ga1ga2 ; (2.22)

UA
ab(k) =

∑

σ

(

Hσ
int

)a1a2

ab
Θσ

kga1ga2 .

It follows from Eq. (2.21) that at each k the quasiparticle amplitudes obey the

orthogonality conditions:

∑

a

(

uνkau
ν′

ka − vνkav
ν′

ka

)

= δνν′;
∑

a

(

uνkav
ν′

ka − vνkau
ν′

ka

)

= 0.

For any value of k Bogoliubov’s equations (2.21) always have at least two zero eigen-

values, which correspond to the zero-norm eigenvector u = −v = g.

The quasiparticle energy equals 2ων(k) and the GSE, condensate fraction and spin

polarization are expressed in terms of uνka and vνka as:

E0

N
=
1

8

(

µn0 +
∑

a

ǫag
2
a

)

+
1

4
µ(1− n0)−

2

N

∑′

k,ν,a

ων(k)
(

vνka
)2
;

n0 =1− 1

N�

∑′

k,ν,a

(

vνka
)2
; (2.23)

〈Sz
in〉 =

(

Sz
n

)

a′a

[

ga′ga +
1

N�

∑′

k,ν

vνka′v
ν
ka

]

.

In this expression k-summations are extended over the plaquette Brillouin zone and

ν-summations over positive eigenvalues of Eq. (2.21), as indicated by the primes.

2.6.2 Results for the symmetric plaquette covering

The condensate fraction n0 should be determined self-consistently. The approxima-

tion is reasonable if n0 ∼ 1. Close to the phase transition points this is not true,

since fluctuations are very large. But deep in each phase the approximation works
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reasonably well, because n0 turns out to be ∼ 0.9. Results of numerical solution

of Eqs. (2.21) and (2.23) for the symmetric covering of the lattice with 2 × 2 pla-

quettes are shown in Figs. 2.13 and 2.14. The system size is 100 × 100 plaquettes

and periodic boundary conditions are assumed. Main panels in Figs. 2.13 and 2.14

correspond to the self-consistent solution and their insets give results after the first

iteration, which is equivalent to solving the time-dependent Gross-Pitaevskii equation

[83]. Due to bad convergence close to the transition points (see, for instance, Fig.

2.13(a)) the values of Jc1
2 and Jc2

2 were determined by extrapolation: Jc1
2 ≈ 0.33J1 and

Jc2
2 ≈ 0.65J1. The large shift of Jc1

2 compared to the HF value is due to fluctuations

in the β-channel, which reduces the nominal value of the magnetization in the Néel

phase down to M(J2 = 0) ≈ 0.37 (see Fig. 2.13(b)) and causes a great suppression

of the condensate, as shown in Fig. 2.14(a).

However, the most interesting quantity to observe is the gap in the excitation

spectrum. Due to the homogeneity of the plaquette lattice, it occurs at k = 0 and

is shown in Fig. 2.5. Technically one may show that its very existence reflects the

nature of the ground state in the paramagnetic phase. Indeed, introducing linear

combinations of the amplitudes u and v: ϕ = u + v and χ = u − v, Bogoliubov’s

Eq. (2.21) can be rewritten in the form:
(

UN + UA
)(

UN − UA
)

χ = ω2χ. In the

non-magnetic phase the condensation occurs in the lowest plaquette state |1100〉:

ga =
√
n0δa,1100 and the chemical potential coincides with its energy: µ = ǫ1100.

Moreover, the matrix
∑

σ

(

Hσ
int

)a,1100

b,1100
vanishes. Writing down the remaining matrices

in (2.22) at k = 0, it is easy to see that there exists only one vector χ, which is

annihilated by
(

UN−UA
)

. Outside the intermediate region this simple situation is not

valid and there exist three eigenvectors χ, which correspond to ω2 = 0. One of them is

the condensate mode and should be discarded. The other two give doubly degenerate

Goldstone modes in the Néel and columnar phases. Here the self-consistent field

determined by ga breaks the spin-rotational symmetry of the original Hamiltonian.
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However, since the CWF ga belongs to theM = 0 subspace, the generator Sz remains

an integral of motion. Thus, there should be two Goldstone modes associated with

rotations around the x and y axes [83].

Our approximation correctly describes the excitation spectrum only at small k.

However, this is more than enough to observe that the collective modes are of the

spin-wave type in the Néel and columnar phases, while in the paramagnetic phase

the excitation band is parabolic. These conclusions are summarized in Fig. 2.14(b),

where we show the lowest branch ω1(k) along two directions k‖[10] and k‖[11] for

three values of J2/J1, chosen in different phases.

74



Chapter 3

Superconductivity in strongly

repulsive fermions

In this chapter we address the question of whether it is possible to realize a super-

conducting phase in a strongly repulsive fermion system. By studying the repulsive

two-dimensional Hubbard model, defined on a lattice made of weakly coupled clusters,

we analytically show that:

• Lattice frustration enhances local hole pairing;

• Magnetic fluctuations establish a robust superconducting phase;

• There exists an “optimal frustration” for which dx2−y2-wave superconduc-

tivity is stabilized for any value of U ≫ t;

We also extend the HMF method to hard-core boson systems.
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3.1 Introduction

One of long-standing fundamental questions in condensed-matter physics is whether

it is possible to realize a superconducting (SC) state in a system consisting only of

electrons subject to a strong Coulomb repulsion, and if so what is the minimal set

of necessary physical assumptions. As we already mentioned in Sec. 1.1.3 an early

attempt to provide an answer was made by Kohn and Luttinger [23], who proposed

a weak-coupling Bardeen-Cooper-Schrieffer (BCS) –like mechanism. While their idea

was never confirmed experimentally, there exist numerous strongly correlated systems

whose SC behavior occurs without any obvious pairing “glue” (such as phonons) be-

tween the electrons. Examples are high-Tc cuprates and heavy fermion compounds.

The current consensus asserts that superconductivity in these materials has an uncon-

ventional, i.e. non-BCS, character [85]. Understanding the microscopic origin of this

intriguing phenomenon remains a challenge. Here we address the above question by

performing a controlled derivation of the SC ground state (GS) for a strongly-repulsive

Hubbard model with spatially modulated transfer integrals.

One possible way of stabilizing a Cooper pair condensate in a repulsive system is to

introduce microscopic inhomogeneities. Indeed, the nanoscale spin and charge mod-

ulations observed in scattering [86], ARPES [87] and STM [88] experiments, seem to

be ubiquitous in high-Tc materials [89] and often accompany the emergence of the SC

state. Theoretically it has been argued that these inhomogeneities are quite relevant

for the superconductivity [90, 91] and seem to assist the Cooper pairing. This was

demonstrated in [90, 92] by using exact diagonalization of strongly interacting models

in finite lattices. In [93] the authors studied the Hubbard model on a checkerboard

lattice, composed of weakly coupled 2× 2 plaquettes, and showed that the SC phase

can be stabilized in a relatively narrow interval of the on-site repulsion U . A similar

problem was considered earlier in [94]. Another ingredient, whose importance for su-

perconductivity was largely overlooked, is the range of the transfer integrals beyond
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nearest-neighbors (NN). The next-NN (NNN) hopping (t′) was shown to enhance

dx2−y2-like pairing correlations in the t-t′-J model on finite clusters [95]. Physically

its main qualitative effect is the possible frustration of the kinetic-energy term: the

smallest closed paths in the lattice are triangles instead of squares.

Below we explicitly demonstrate how local kinetic-energy frustration can stabilize

the SC state in a strongly repulsive two-dimensional Hubbard model. The lattice, on

which the model is defined, is presented in Fig. 3.1 panels (a) and (b). It consists of

weakly-coupled tetrahedra, i.e. plaquettes with frustrated hoppings along the diago-

nals. We show that a dx2−y2–wave SC phase exists for arbitrarily strong repulsion U .

In fact, the problem can be treated analytically in the strong-coupling regime.

Our motivation to study this system is not purely academic. Advances in ex-

perimental methods of preparation and manipulation of ultracold fermion atoms in

optical lattices provide a controlled way to test these theoretical ideas. For example,

in recent experiments [96, 8] the observation of a Mott state with 40K atoms was

reported. An experiment aimed to find d-wave superconductivity in a checkerboard

Hubbard model was proposed in [97].

3.2 Tetrahedral Hubbard model

3.2.1 General formulation

Let us consider the repulsive Hubbard model:

H = −
∑

〈ij〉,σ
tij
(

c†iσcjσ + h.c.
)

+ U
∑

i

ne
i↑n

e
i↓, (3.1)

defined on the lattice, Fig. 3.1(a), in terms of fermionic (creation) operators c†iσ.

Here 〈ij〉 denotes links connecting sites i and j, σ = {↑, ↓} is the electron spin, and

ne
iσ = c†iσciσ. The amplitudes tij take four possible values: (i) t for links 〈12〉, 〈13〉,
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(π, 0)

2t − t′

(π, π)
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Figure 3.1: (a) Tetrahedral lattice topology. The interplaquette hopping amplitudes
are: NN τ1 (solid lines) and NNN τ2 (dashed lines). We only consider the case τ2 6

τ1. (b) A frustrated plaquette (tetrahedron) with NN (solid line) and NNN (dotted
line) hoppings. (c) Single-electron states on the plaquette in panel (b). Numbers in
parentheses denote k-components.

〈24〉 and 〈34〉; (ii) t′ for the diagonals 〈14〉 and 〈23〉; (iii) τ1 for NN links, connecting

two plaquettes; (iv) τ2 for NNN interplaquette links.

We will consider the case τ1,2 ≪ t, t′, U , which allows for a controlled perturbative

expansion of the Hamiltonian (3.1). To demonstrate the existence of a robust SC

phase, we derive a low-energy effective model accurate to second order in τ1,2. In

general this is doable only numerically. However, in the limit t, t′ ≪ U we can keep

only lowest-order terms in tij/U , and thus provide a closed form for the effective

Hamiltonian (EH). The stability of the Cooper pair condensate can be tuned by

changing the ratio t′/t. There is an “optimal” value of this ratio, which ensures a

finite energy gap (hole binding energy) between the plaquette states with one and

two holes for all finite U .
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Figure 3.2: Left panel: Hole binding energy ∆(U) in the maximally frustrated case
t′ = t. The asymptotic behavior is: ∆(U ≫ t) ≈ 2t2/U and ∆(U ≪ t) ≈ U2/32t.
Upper inset: Critical value Uc(t

′) [∆(Uc) = 0]. Lower inset: Group C4v. Numbers
indicate plaquette vertices. The black square denotes four-fold axis C4, horizontal
and vertical lines – primary symmetry planes σv, diagonals – secondary planes σ′v.
Right panel: Hole binding energy ∆(U) for several values of NNN hopping t′.

3.2.2 Single-plaquette states

The Hubbard Hamiltonian on a single plaquette can be diagonalized exactly [94] by

using representations of the crystallographic group C4v [98] (see the lower inset in the

left panel in Fig. 3.2). Details of this simple, but lengthy calculation are presented

in Appendix A at the end of this chapter; here we only use the relevant results.

Our main quantity of interest is the hole binding energy ∆ = 2ǫ0(3)−ǫ0(2)−ǫ0(4),

where ǫ0(Ne) is the GS for a given number of electrons Ne. Positive values of ∆

correspond to binding of two holes. In general ∆ is positive only in a finite range of

U . At some critical value Uc(t
′) (Fig. 3.2, right panel and upper inset in the left panel),

it changes sign and remains negative as U → ∞. There is a special ratio, t′/t = 1, at

which Uc diverges and ∆ stays positive for any value of U (left panel of Fig. 3.2). This

results from the maximal frustration of the single-hole kinetic energy. The GS energy

for 4 electrons (zero holes), ǫ0(4) → 0 for U → ∞ because the particles cannot move.

On the other hand in this limit ǫ0(2) = 2ǫ0(3), which means that there is no kinetic-

79



ǫ0(3)− ǫ0(4) = J ǫ0(2) − ǫ0(4) = J

Figure 3.3: Magnetic mechanism of hole binding in an isolated plaquette. Shown are
plaquettes with three (left), four (center) and two (right) electrons. The arrows denote
electron spins. When t′ = t and t/U ≪ 1, the GS at half filling is degenerate (see
Chap. 1.1.2). NNN hopping leads to the frustrating exchange interaction J ′ = 4t2/U
for small t/U . The magnetic energy costs of removing one and two electrons from
the half-filled plaquette are the same, leading to ∆M = J .

energy gain for creating two holes on different plaquettes; i.e. the single-hole kinetic

energy is optimally frustrated. The exchange interaction J = 4t2/U that appears for

finite t/U ≪ 1 leads to pairing (∆ > 0) because the magnetic configuration of two

plaquettes with one hole in each of them is more frustrated than the configuration

with two holes in the same plaquette (see Fig. 3.3). This leads to a positive value of

∆M = J . Corrections coming from the kinetic energy of holes, reduce this value by

J/2, resulting in the hole binding energy of ∆ = J/2.

From now on we will only consider the maximally frustrated point t′/t = 1.

Then the symmetry group G of the single-plaquette Hamiltonian is larger than C4v

(symmetry group for arbitrary t′/t) and contains all the independent permutations of

any pair of vertices of the plaquette. This symmetry translates into a GS degeneracy

at half-filling. There are two SU(2)-singlet states: one transforming as the identity

representation of C4v, A1 (s-wave), and the other – as B1 (dx2−y2-wave) [4]. These

states are connected by symmetry operations from the factor group G/C4v. The two-

electron GS is also a singlet and belongs to the identity representation of G. The

Ne = 3 GS has S = 1/2 and is six-fold degenerate.
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General expressions for these eigenstates are quite cumbersome. However, to the

lowest order in t/U we can consider only states without doubly occupied sites. Hence

we have the GS for Ne = 2: |Ω2〉 =
(

1/2
√
3
)
∑

〈ij〉 s
†
ij|0〉 with the summation extended

over all links of a plaquette; and for Ne = 4: |Ωs,d
4 〉 = Ns,d

(

s†13s
†
24 ± s†12s

†
34

)

|0〉. In

these expressions s†ij is a singlet creation operator, s†ij = c†i↑c
†
j↓ − c†i↓c

†
j↑, |0〉 is the

empty state and Ns = −1/2, Nd = 1/2
√
3. Finally, we introduce operators Pij ,

which permute sites i and j. In the basis {|Ωs
4〉, |Ωd

4〉}, P12 and P13 have the form:

P12,13 = −σz/2 ±
√
3σx/2 with σα (α = x, z) Pauli matrices. We will use this

expression to determine symmetries of the effective model.

3.2.3 Effective low-energy theory

The low-energy spectrum of decoupled plaquettes has a gap ∆ to single-hole (Ne = 3

on each plaquette) states. Here we consider the effect of finite hopping amplitudes

τ1,2 by assuming that 0 6 τ1,2 ≪ ∆ ∼ t2/U ≪ t ≪ U . The second inequality

allows us to treat interplaquette hoppings perturbatively. The fourth one allows us

to exclude states with doubly occupied sites, i.e. use as a basis the states |Ω2〉 and

|Ωs,d
4 〉. Finally, the third inequality constrains the choice of the virtual states: only

states that belong to the Ne = 3 GS sextet contribute to lowest order. We will also

assume that τ2 6 τ1.

The second-order EH can be symbolically written as:

Heff = P(0)Hτ

(

1− P(0)
) 1

E0 −H(0)

(

1− P(0)
)

HτP(0),

whereH(0) describes a set of noninteracting plaquettes in (3.1), E0 is its GS energy, Hτ

denotes plaquette interactions, and P(0) is a projector onto the subspace with Ne = 2

or 4 on each plaquette. Next we associate the product of the two-electron plaquette

GS with the vacuum: |vac〉 =
∏

x |Ω2〉x and each member of the four-electron GS
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doublet on plaquette x – with a hard-core boson: |Ωα
4 〉x = b†xα|Ω2〉x, where α = s

or d represents the pseudospin index. The algebra generated by bxσ was discussed

in Ref. [99]. Thus, the effective low-energy theory given by Heff describes a system

of two-flavor hard-core bosons, propagating in the coarse-grained plaquette lattice of

Fig. 3.1(a). In terms of these boson operators we have:

Heff =
∑

〈xy〉,αβ
teffαβ

(

b†xαbyβ + b†yβbxα
)

− µ
∑

x,α

nxα+ (3.2)

+
∑

〈xy〉,αβ
V eff
αβ

[

(1− nx)b
†
yαbyβ + (1− ny)b

†
xαbxβ

]

,

where 〈xy〉 denotes NN plaquettes, teffαβ are corresponding hopping amplitudes, V eff
αβ

– density-density and local spin-flip interactions, nxα = b†xαbxα and nx = nxs + nxd,

and µ is the chemical potential. The virtual processes leading to teff and V eff are

schematically shown in panel (a) in Fig. 3.4. Direct interactions between pseudospins,

like Heisenberg terms, are not present to lowest order in ∆/t and t/U . For details

regarding the derivation of Eq. (3.2) and following expressions, we direct the reader

to Appendix B at the end of this chapter.

Some general properties of teff and V eff can be established by symmetry arguments.

First, the Hamiltonian (3.1) is invariant under reflections in the planes which include

τ1 links, e.g. the plane connecting sites 2 and 3 in Fig. 3.1(a). The states |Ω2〉 and

|Ωs
4〉 are symmetric under this operation, while the d-wave state |Ωd

4〉 is antisymmetric.

Consequently the off-diagonal matrix elements of teffsd and V eff
sd vanish: teffαβ = teffααδαβ ,

V eff
αβ = V eff

αα δαβ. This result is independent of the assumptions made regarding the

relative magnitude of τ1,2, U and t.

Another observation concerns the diagonal elements of teff and V eff in the special

cases τ2 = τ1 and τ2 = 0. In the first case we consider the two plaquettes with num-

bered sites, shown in Fig. 3.1(a), and perform simultaneous permutations of vertices

1 ↔ 2 on the left plaquette and 1 ↔ 3 on the right one. Each operation is a symme-

82



try of the single-plaquette Hamiltonian. Their combination amounts to interchanging

the τ1 and τ2 links, which is now a symmetry of the connecting Hamiltonian. Using

the relation P12,13|Ω2〉 = |Ω2〉, it is easy to show that for τ1 = τ2: t
eff
ss = −teffdd and

V eff
ss = V eff

dd . In the case τ2 = 0, when the plaquettes are connected by only one τ1

link, the second-order virtual hopping of an electron can only proceed through an

intermediate state, whose energy is of order U . Therefore, in the approximation for-

mulated above teff must vanish. On the contrary, V eff is not associated with the net

electron transfer and remains finite.

A direct calculation yields the precise form of the coefficients teff and V eff :

teffαβ =−
(

τ 21 /6∆
)

diag
{

rτ (2rτ + 1), −3rτ
}

; (3.3)

V eff
αβ =−

(

τ 21 /48∆
)

diag
{

9 + 8rτ + 16r2τ , 9 + 24r2τ
}

with rτ = τ2/τ1. Clearly, in the two special cases discussed above – rτ = 1 and 0 –

the EH (3.2) becomes pseudospin symmetric. The second case is irrelevant for the

purposes of studying the SC state, while the first one, rτ = 1, is quite instructive.

In this case we can use the Perron-Frobenius theorem to prove that there exists a

pseudospin-polarized GS [100]. The Hamiltonian can then be written only in terms

of spinless bosons (say bxd) and maps onto the spin-1/2 XXZ model in a magnetic

field µ via the Matsubara-Matsuda transformation [101]. The phase diagram of this

model contains Néel, canted XY-antiferromagnetic, and fully polarized states that

are immediately identified with the density-wave (DW), Bose-Einstein condensate

(BEC) of Cooper pairs, and Mott phases, respectively. The DW and BEC states are

separated by a 1st order quantum phase transition.
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Figure 3.4: (a) Lowest order virtual processes which contribute to the coefficients
V eff
αβ (top) and teffαβ (bottom) in Eq. (3.2). (b) Low-energy phase diagram of the

Hubbard model Eq. (3.1). Phases are: s-wave density wave (DW) with wavevector
(π, π); d-wave SC, which corresponds to a BEC of bd; Mott insulating (MI) phase
with 〈nx〉 = 1. The DW – SC phase transition is 1st order; the SC – MI transition is
2nd order. The inset shows ∆d ∼ 〈bxd〉 for rτ = 1.

3.3 Results

3.3.1 Phase diagram of the low-energy model

We do not expect the physics to change qualitatively for 0 < rτ < 1. It is known that

the usual mean-field approximation yields satisfactory results for rτ = 1 when com-

pared to Monte-Carlo simulations [102]. Thus, we anticipate that the rest of the phase

diagram along the rτ axis can be described within a simple variational approach. We

employ the HMF method explained in Chap. 2 which includes short-range quantum

fluctuations and, as a limit, contains the semiclassical spin-wave ansatz (see Appendix

C for details). The resulting phase diagram obtained using 2× 2 site clusters (in the

plaquette lattice) is presented in Fig. 3.4(b). For any finite 0 < rτ < 1 the sys-

tem exhibits the same three phases, as in the case rτ = 1. The SC and DW phases

are again separated by a 1st order transition. The transition between SC and Mott

phases is 2nd order. In the Mott state there is exactly one boson per site; i.e. the
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electron filling is 1/2. In this phase the pseudospin polarization is undefined, as the

Hamiltonian (3.2) becomes spin-independent. Interestingly the DW phase is of an

s-wave nature, because the expectation value of the kinetic energy vanishes, while

density-density interactions favor the s-wave pseudospin polarization.

The SC state has a dx2−y2-wave symmetry. The structure of the “Cooper pair”

can be determined by observing that bd = D/3− (1/4)(s14 + s23)
(

| rr rr〉〈 rr rr| − | rr rr〉〈 rr rr|
)

,

where | rr rr〉 = s†13s
†
24|0〉, | rr rr〉 = s†12s

†
34|0〉 and D = s13 + s24 − s12 − s34 (see the lower

inset of Fig. 3.2). Hence, despite the apparent complexity of the SC phase it can

still be characterized by a familiar d-wave order parameter ∆d = 〈D〉, shown in the

inset of Fig. 3.4(b) for rτ = 1. As rτ decreases, the height of the SC dome gradually

diminishes and disappears at rτ = 0. Thus, for any 0 < rτ < 1 there is an interval

of µ where the SC phase is stabilized. This conclusion becomes rigorous in the dilute

limit of particles or holes by virtue of the inequality |teffdd | > |teffss |, valid for rτ < 1 [see

Eq. (3.3)].

3.3.2 Possible application to optical lattices

Before closing this chapter we would like to address the possibility to test our theory

in experiments, involving cold atoms in optical lattices. In particular, we are going

to discuss potential realizations of the “maximally” frustrated 2×2 plaquette optical

lattice. A related proposal to build a square optical lattice with NNN hoppings was

discussed in [103]. It was concluded that the maximal value of the NNN hopping

(relative to the NN amplitude) that can be achieved is close to one-half: t′/t = 0.5.

Thus, the experimental realization of the interesting case t′/t = 1 seems to face

serious challenges. In the present section we present a theoretical proposal aimed to

circumvent this difficulty. Our argument builds upon ideas developed in [103].

We start by constructing a 2D optical lattice consisting of isolated 2×2 plaquettes.

This can be accomplished by superimposing two laser beams along the orthogonal x
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A B A

∆ǫ tABtAB

Figure 3.5: Upper panel: Optical lattice proposed in the text. Blue (red) circles de-
note sites in the sublattice A (B). Thick blue lines represent equal A-A intraplaquette
hoppings through the central B site; the direct A-A hopping is suppressed. Lower
panel: Indirect hopping process between the A sites.

and y directions

V0(x, y) = v(x) + v(y). (3.4)

Along each direction the potential v(ξ) is a combination

v(ξ) = f2(ξ)− ηf1(ξ),

where fk(ξ) = cos 2πkξ
λ

, and λ is the optical wavelength. By varying the parameter η,

the interplaquette hopping can be made much smaller than the intraplaquette one.

We will denote the lattice thus created as A.

Next we build another 2D lattice B on top of the first one with twice the pe-

riod. The corresponding optical potential, V1(x, y), is chosen so that its minima con-

cide with the centers of plaquettes. The resulting two-lattice construction is shown

schematically in Fig. 3.5. The separation ∆ǫ between GS in A- and B-type quantum

wells can be controlled by tuning parameters in V0 and V1. Due to the large B lattice
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constant we can neglect the direct B-B hopping and consider only the interlattice

processes, tAB.

The transfer of a fermion between two A type sites can now occur either directly,

or via a 2nd order process through the central B site. The amplitude of the direct

hopping can be estimated as

tAA ∼ t0AA e
−(a/a0)p0 , (3.5)

where the spatial separation between minima a, the prefactor t0AA, the characteristic

length a0, and power p0 depend on details of the potential; of course, they are not

mutually independent. The interlattice hopping can similarly be written as

tAB ∼ t0AB e
−(a/

√
2a1)p1 ,

with parameters having the same interpretation as in tAA. Therefore, the 2nd order

(indirect) hopping process has an amplitude (∆ǫ ≫ tAB)

t̃AA = −t
2
AB
∆ǫ

∼ −
(

t0AB
)2

∆ǫ
e−2(a/

√
2a1)p1 . (3.6)

Our key assumption is that the direct hopping (3.5) can be made smaller than

the 2nd order amplitude (3.6), i.e. tAA < t̃AA. This can be achieved by increasing

either a1/a0 or a/a0. We note that a0 and a1 are determined by the curvature of the

minima of V0(x, y) and V1(x, y). In particular, since lattice A has a higher density of

minima (four per unit cell) than lattice B (one minimum per unit cell), these minima

are steeper than the ones of lattice B. Therefore, the ratio a1/a0 must be larger than

one. Once the condition tAA < t̃AA is satisfied the fermion can tunnel between any

two A sites within a plaquette only through the central B site. Clearly the amplitudes

for all these indirect processes coincide, i.e. t′ ∼ t.
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Figure 3.6: Optical potentials Eq. (3.7): (a) V (a) with (η, ν) = (1.5, 1.3). (b) V (b)

with (η, ν) = (1.5, 3.0).

Let us consider a couple of example optical potentials, which may be used to

realize this regime:

V (a) =
∑

ξ=x,y

v(ξ)− ν
[(

1 + f2(x− y)
)(

1 + f2(x+ y)
)

− 1
]

;

V (b) =
∑

ξ=x,y

v(ξ)− νf2(x)f2(y), (3.7)

where all distances are measured in the units of the optical wavelength, i.e. λ = 1.

Color maps of these functions are shown in Fig. 3.6.

3.4 Discussion

Our phase diagram (Fig. 3.4(b)) was obtained in the strong-coupling limit t/U ≪ 1,

where one can derive the effective model of Eqs. (3.2), (3.3). The EH becomes in-

creasingly complicated for intermediate couplings U ∼ t, because of the large number

of virtual transitions. In this regime the existence of d-wave superconductivity in the

nonfrustrated Hubbard model was argued in [93] based on a first-order EH, treated

within a mean-field approximation, and in the weak-coupling regime U ≪ t in [26].
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Therefore, we expect the SC phase to persist for U ∼ t in our frustrated case as well.

However, regardless of the magnitude of U , the SC state is quite sensitive to the pres-

ence of longer-range repulsions. For instance, an interaction of the form
∑

Vijn
e
in

e
j

with Vij = V for all links within the plaquette, will suppress the local hole binding

if V > Vc = 0.114t. For V < Vc the SC phase is stable only in a finite interval of U

around U ∼ 7t.

Our theory highlights the importance of kinetic energy frustration for stabilizing

the SC state. Locally, pairing competes against the kinetic energy and can be in-

creased by frustrating the latter. This principle guides the choice of the elementary

unit, e.g., tetrahedron. The connectivity of the lattice, built from these blocks is an-

other essential ingredient. Here we used the lattice of Fig. 3.1(a) to demonstrate the

existence of the SC state in a physically transparent way. However, we also considered

the usual checkerboard lattice [93]. In this case the relation between coefficients in

the EH is such that the phase-separated state can suppress superconductivity in a

certain region of the phase diagram. The importance of the lattice topology is further

illustrated by the case τ2 = 0. Without the interplaquette hopping (3.3), the global

phase coherence can be established only in higher orders in 1/U , leading to a quite

fragile SC state.

We believe that the lattice of Figs. 3.1(a) and 3.5 can be realized using ideas of

Refs. [97, 103]. Our effective strong-coupling model can be easily extended to the

currently experimentally realizable regime t′/t . 0.5 under the condition t≪ U < Uc,

which can still be fulfilled for t′/t = 0.5 because Uc ≈ 11t (see inset of Fig. 3.2). The

resulting phase diagram is qualitatively the same as the one shown in Fig. 3.4(b).

Thus, our results can be tested in future cold atom experiments.
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Table 3.1: Character table of C4v, see also Fig. 3.2 and [4]

C4v 1 C2 2C4 2σv 2σ′v
A1 1 1 1 1 1
A2 1 1 -1 1 -1
A3 1 1 -1 -1 1
A4 1 1 1 -1 -1
E 2 -2 0 0 0

3.5 Appendix A: Single-plaquette states

The Hubbard model on a 2×2 plaquette with NN (t) and NNN (t′) hoppings is given

by (see also Fig. 3.1):

H2×2 =T (t, t
′) + V = −t

∑

σ

[(

c†1σ + c†4σ
)(

c2σ + c3σ
)

+ h.c.
]

−

− t′
∑

σ

(

c†1σc4σ + c†2σc3σ + h.c.
)

+ U

4
∑

i=1

ni↑ni↓. (3.8)

Note that we do not impose periodic boundary conditions. In the general case t 6= t′,

this Hamiltonian is invariant under transformations from the group C4v, whose char-

acter table [4] is shown in Tab. 3.1. Therefore, the Hilbert space breaks into sectors,

corresponding to irreducible representations of this group. At the maximally frus-

trated point t = t′ there is an additional symmetry associated with permutations of

every pair of sites. It will allow us to reduce the dimension of each of the above sectors

even further and give analytical expressions for the GS energies and wavefunctions

for Ne = 2, 3 and 4 electrons.

Throughout this section the following notations will be widely used:

{ij} = c†i↑c
†
j↓ − c†i↓c

†
j↑; [ij] = c†i↑c

†
j↓ + c†i↓c

†
j↑; (ij) = c†i↑c

†
j↓.
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3.5.1 General case t 6= t′

(i) Two holes: Ne = 2

The GS is a spin singlet. There are ten singlet states: four have only doubly occupied

sites, and remaining six states contain exactly one electron per site. The correspond-

ing representations, D4 and D6, are reducible in C4v and can be decomposed as:

1 C2 2C4 2σv 2σ′v

D4 4 0 0 0 2 A1 + A3 + E

D6 6 2 0 2 2 2A1 + A2 + A3 + E

The basis functions of 1D representations are given by:

|ψ1〉 ≡|ψ1
A1
〉 = 1

2

4
∑

i=1

(ii)|0〉;

|ψ2〉 ≡|ψ2
A1
〉 = 1

2

(

{14}+ {23}
)

|0〉;

|ψ3〉 ≡|ψ3
A1
〉 = 1√

8

(

{12}+ {13}+ {24}+ {34}
)

|0〉;

|ψA2
〉 = 1√

8

(

{12} − {13} − {24}+ {34}
)

|0〉;

|ψ1
A3
〉 = 1

2

4
∑

i=1

(−1)i(ii)|0〉;

|ψ2
A3
〉 = 1

2

(

{14} − {23}
)

|0〉.

Clearly the interacting term V in the Hubbard Hamiltonian is diagonal in this basis.

Matrix elements of the kinetic energy T (t, t′) between the states |ψ1,2,3〉 are given by:

T =













0 −2t′ −
√
8t

−2t′ 0 −
√
8t

−
√
8t −

√
8t −2t′
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(ii) Half-filling: Ne = 4

The GS is again a singlet. In total there are 20 singlet states. Similarly to the

previous subsection they can be decomposed into three groups depending on the site

occupancy: only double (6 states), single and double (12 states) and only single (2

states). The corresponding decompositions are:

1 C2 2C4 2σv 2σ′v

D2 2 2 0 2 0 A1 + A2

D6 6 2 0 2 2 2A1 + A2 + A3 + E

D12 12 0 0 0 2 2A1 + A2 + 2A3 + A4 + 3E

Again, we will consider only 1D representations for D2 and D6, and only A1 and A2

representations for D12. The basis functions are:

|ψ1〉 ≡|ψ1
A1
〉 = 1√

2

[

(11)(44) + (22)(33)
]

|0〉;

|ψ2〉 ≡|ψ2
A1
〉 = 1

2

[

(11) + (44)
][

(22) + (33)
]

|0〉;

|ψ3〉 ≡|ψ3
A1
〉 = 1

2
{14}{23}|0〉;

|ψ4〉 ≡|ψ4
A1
〉 = 1√

8

[

((11) + (44)){23}+ ((22) + (33)){14}
]

|0〉;

|ψ5〉 ≡|ψ5
A1
〉 = 1

4

[

((11) + (33)){24}+ ((11) + (22)){34}+

+ ((22) + (44)){13}+ ((33) + (44)){12}
]

|0〉;

|ψ1
A2
〉 = 1

2

[

(11)− (44)
][

(22)− (33)
]

|0〉;

|ψ2
A2
〉 = 1

2
√
3

[

2((13)(42) + (31)(24))− [14][23]
]

|0〉;

|ψ3
A2
〉 = 1

4

[

((11) + (33)){24}+ ((22) + (44)){13}−

− ((11) + (22)){34} − ((33) + (44)){12}
]

|0〉;

|ψA3
〉 = 1√

2

[

(11)(44)− (22)(33)
]

|0〉.
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The matrix elements of T (t, t′) in the basis |ψ1...5〉 have the form:

T =

























0 0 0 0 −
√
8t

0 0 0 −
√
8t′ −2t

0 0 0 −
√
8t′ 2t

0 −
√
8t′ −

√
8t′ 0 0

−
√
8t −2t 2t 0 0

























(iii) One hole: Ne = 3

In this sector the GS has both finite spin and momentum. In the absence of the

second-neighbor hopping t′ the spin of the GS is 1/2 for small U/t [104] and 3/2 for

U/t above some critical value, in accordance with Nagaoka’s theorem [105]. When

t′ 6= 0, it turns out than the GS always has spin 1/2. In general the states with

momentum q1 = (0, π) or q2 = (π, 0) have lower energy that the state with q3 = (π, π),

and form a 2D vector representation of C4v. However, in the maximally frustrated

case t = t′ all three of these states become degenerate. Therefore, below we only

compute matrix elements of T (t, t′) between states with spin 1/2 and momentum q3,

which belong to the antisymmetric representation A3 (see Tab. 3.1).

In the subspace without doubly occupied sites there are twelve Sz = 1/2 states.

They form a representation which decomposes as 2A1+A2+2A3+A4+3E. However,

only eight of them correspond to S = 1/2, and the representation is reduced as:

1 C2 2C4 2σv 2σ′v

D8 8 0 0 0 0 A1 + A2 + A3 + A4 + 2E

The subspace with doubly occupied sites is twelve-dimensional and all states have

spin 1/2. The corresponding representation is isomorphic to D12 of the half-filled

case considered above.
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The basis functions for 1D representations with Sz = 1/2 are:

|ψ1〉 ≡|ψ1
A3
〉 = 1√

8

[

{14}(c†2↑ + c†3↑)− {23}(c†1↑ + c†4↑)
]

|0〉;

|ψ2〉 ≡|ψ2
A3
〉 = 1

2

[

(c†4↑(11) + (44)c†1↑)− (c†3↑(22) + (33)c†2↑)
]

|0〉;

|ψ3〉 ≡|ψ3
A3
〉 = 1√

8

[

((11) + (44))(c†2↑ + c†3↑)− ((22) + (33))(c†1↑ + c†4↑)
]

|0〉;

|ψ1
A1
〉 = 1√

8

[

{14}(c†2↑ + c†3↑) + {23}(c†1↑ + c†4↑)
]

|0〉;

|ψ2
A1
〉 = 1

2

[

(c†4↑(11) + (44)c†1↑) + (c†3↑(22) + (33)c†2↑)
]

|0〉;

|ψ3
A1
〉 = 1√

8

[

((11) + (44))(c†2↑ + c†3↑) + ((22) + (33))(c†1↑ + c†4↑)
]

|0〉;

|ψ1
A2
〉 = 1√

6

[

c†2↑c
†
3↑(c

†
1↓ − c†4↓)−

1

2
[23](c†1↑ − c†4↑)+

+ c†1↑c
†
4↑(c

†
2↓ − c†3↓)−

1

2
[14](c†2↑ − c†3↑)

]

|0〉;

|ψ2
A2
〉 = 1√

8

[

((11)− (44))(c†2↑ − c†3↑) + ((22)− (33))(c†1↑ − c†4↑)
]

|0〉;

|ψ1
A4
〉 = 1√

6

[

c†2↑c
†
3↑(c

†
1↓ − c†4↓)−

1

2
[23](c†1↑ − c†4↑)−

− c†1↑c
†
4↑(c

†
2↓ − c†3↓) +

1

2
[14](c†2↑ − c†3↑)

]

|0〉;

|ψ2
A4
〉 = 1√

8

[

((11)− (44))(c†2↑ − c†3↑)− ((22)− (33))(c†1↑ − c†4↑)
]

|0〉.

The matrix elements of T (t, t′) in the basis |ψ1,2,3〉 have the form:

T =













−(t + t′)
√
2t −(t + 2t′)

√
2t t′ −

√
2t

−(t+ 2t′) −
√
2t −(t+ t′)
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Finally, we list basis function for the 2D representations E with Sz = 1/2:

{

|ψ1
E1
〉 = 1

2
{14}

(

c†2↑ − c†3↑
)

|0〉;

|ψ2
E1
〉 = 1

2
{23}

(

c†1↑ − c†4↑
)

|0〉.
{

|ψ1
E2
〉 = 1√

3

[

c†1↑c
†
4↑
(

c†2↓ + c†3↓
)

− 1
2
[14]

(

c†2↑ + c†3↑
)]

|0〉;

|ψ2
E2
〉 = 1√

3

[

c†2↑c
†
3↑
(

c†1↓ + c†4↓
)

− 1
2
[23]

(

c†1↑ + c†4↑
)]

|0〉.
{

|ψ1
E3
〉 = 1√

2

[

(11)c†4↑ − (44)c†1↑
]

|0〉;

|ψ2
E3
〉 = 1√

2

[

(22)c†3↑ − (33)c†2↑
]

|0〉.
{

|ψ1
E4
〉 = 1

2

(

c†2↑ + c†3↑
)[

(11)− (44)
]

|0〉;

|ψ2
E4
〉 = 1

2

(

c†1↑ + c†4↑
)[

(22)− (33)
]

|0〉.
{

|ψ1
E5
〉 = 1

2

(

c†2↑ − c†3↑
)[

(11) + (44)
]

|0〉;

|ψ2
E5
〉 = 1

2

(

c†1↑ − c†4↑
)[

(22) + (33)
]

|0〉.

3.5.2 Maximally frustrated case t = t′

The set of basis functions, presented in the previous subsection can be further reduced

at the maximally frustrated point. Below we determine the GS in each Ne-sector.

(i) Two holes: Ne = 2

The 3 × 3 Hamiltonian matrix is block-diagonalized to 2 × 2 and 1 × 1 blocks. The

2D subspace is spanned by the wavefunctions:

|1〉 = |ψ1〉; |2〉 =
√

1

3

(

|ψ2〉+
√
2|ψ3〉

)

.

The Hamiltonian matrix,

H2 =







U −2
√
3t

−2
√
3t −4t






.
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has the following eigenvalues:

E± = −2t+ U/2±
√

(4t)2 + 2tU +
(

U/2
)2
.

The GS energy is ǫ(2) = E−.

The remaining state,
√

2/3
(

|ψ2〉 − 1/
√
2|ψ3〉

)

, represents the 1D subspace with

eigenvalue 2t.

(ii) Half-filling: Ne = 4

The five dimensional GS subspace is reduced to subspaces of dimensions 3 and 2. The

3D subspace is generated by the states:

|1〉 =
√

2

3

(

|ψ1〉 −
1√
2
|ψ2〉

)

; |2〉 = |ψ3〉; |3〉 =
√

2

3

(

|ψ4〉 −
1√
2
|ψ5〉

)

.

The Hamiltonian matrix can be written as:

H3 =













2U 0 2t

0 0 −2
√
3t

2t −2
√
3t U













.

Eigenvalues of this matrix are given by:

Ek/2t =g + 2

√

g2 + 4

3
cos

φ(g)− 2π(k − 1/2)

3
,

φ(g) =arctg

√

1

g2

(

g2 + 4

3

)3

− 1,

where g = U/2t. The GS corresponds to k = 2: ǫ(4) = E2.

The 2D subspace is spanned by symmetric functions:

|1〉 = 1√
3

(

|ψ1〉+
√
2|ψ2〉

)

; |4〉 = 1√
3

(

|ψ4〉+
√
2|ψ5〉

)

.
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The Hamiltonian matrix,

H2 =







2U −4t

−4t U







has eigenvalues

ε =
3

2
U ±

√

(4t)2 +
(

U/2
)2
,

which describe excited states.

(iii) One hole: Ne = 3

In this case, there is no reduction of the basis due to higher symmetry. Using the

notations introduced above we can write the Hamiltonian matrix as:

H3 =













−2t
√
2t −3t

√
2t t + U −

√
2t

−3t −
√
2t −2t+ U













.

The eigenvalues have the form:

Ek/t =− 1 +
4

3
g + 4

√

(

2g

3

)2

+
2g

3
+

16

3
cos

φ(g)− 2π(k − 1/2)

3
,

φ(g) =arctg

√

√

√

√4

[

(2g/3)2 + 2g/3 + 16/3
]3

[

4(2g/3) + 3(2g/3)2 + 2(2g/3)3
]2 − 1.

Again the lowest eigenvalue is given by k = 2: ǫ(3) = E2.

(iv) Asymptotics

Now it is easy to analyze asymptotic behavior of the above-obtained GS energies:

• Weak coupling, g ≪ 1:

ǫ(2)/t ≈ −6 +
g

2
− 3g2

32
, ǫ(4)/t ≈ −4 +

3g

2
− 13g2

32
, ǫ(3)/t ≈ −5 + g − 6g2

32
;
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• Strong coupling, g ≫ 1:

ǫ(2)/t ≈ −4 − 6

g
, ǫ(4)/t ≈ −6

g
, ǫ(3)/t ≈ −2 − 11

2g
.

These expressions provide us with asymptotic behavior of the hole binding energy

∆ = 2ǫ(3)− ǫ(2)− ǫ(4) (see Fig. 3.2):

∆/t ≈
{

g2/8 = U2/32t2; U ≪ t;

1/g = 2t/U ; U ≫ t.

3.6 Appendix B: Low-energy model for t = t′

Now we will use the results of Appendix A to construct an effective low-energy bosonic

model (3.2) for the full lattice shown in Fig. 3.1(a).

When plaquettes are decoupled, there is a gap ∆ to fermionic (single-hole) states.

Thus, before deriving the effective model we need to know the number of even-Ne

single-plaquette states in the gap. By diagonalizing the Hamiltonian (3.8) numeri-

cally, we find that in the sector Ne = 2 the GS is non-degenerate for U 6= 0 and all

excited states reside above the gap.

In contrast, for Ne = 4 the GS is always two-fold degenerate. This degeneracy is

apparent if one considers not only the A1-type, but also A2-type states. There are

three of them, presented in the previous Appendix. The Hamiltonian matrix written

in the basis of these states:

HA2

3 =













2U 0 −2t

0 0 −2
√
3t

−2t −2
√
3t U













,
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has the same eigenvalues as H3 already diagonalized above1.

The Hamiltonian (3.1) can be decomposed into the single-plaquette (H�) and

inter-plaquette (Hτ ) parts:

H =
∑

H� +Hτ ,

where Hτ contains an energy scale τ . We will focus on the case τ ≪ ∆. In general

the effective model has to be derived numerically: however in the limit U ≫ t this

calculation can be performed analytically. Since ∆ ∼ t2/U ≪ t only terms of the

order τ 2/∆ have to be kept and only states, which do not contain doubly occupied

sites, have to be considered.

The effective Hamiltonian has a symbolic form:

Heff = PHτ

(

1−P
) 1

E −H

(

1− P
)

HτP,

where P is the projector onto the subspace spanned by a product of half- and quarter-

filled GS (|ΩNe
〉) on each plaquette. In the large-U limit these states are given by:

|Ω2〉 =
1√
12

(

{14}+ {23}+ {12}+ {13}+ {24}+ {34}
)

|0〉;

|Ωs
4〉 =

1

2
{14}{23}|0〉;

|Ωd
4〉 =

1√
12

(

2c†1↑c
†
4↑c
†
2↓c
†
3↓ + 2c†1↓c

†
4↓c
†
2↑c
†
3↑ − [14][23]

)

|0〉.

The states Ωs
4 and Ωd

4 belong to A1 and A2, respectively, and have s-wave and dx2−y2-

wave symmetries. The only allowed second-order virtual transitions are shown in

Fig. 3.4(a): 2 4A → 3 3 → 2 4A′; 2 4A → 3 3 → 4A′ 2 with A = s or d. The virtual

1We note, that in general, HA2

3 does not depend on t′. At half-filling for t′ = 0 the GS is given
by its lowest eigenvalue. The fact that in the non-frustrated case the GS transforms like A2 (and
not A1) is easy to understand using the first-order perturbation theory in U . The secular equation
yields the zero-order GS in the form:

|ψ(0)〉 ∼ c†q0↑c
†
q0↓

(

c†q1↑c
†
q1↓

− c†q2↑c
†
q2↓

)

|0〉 ∼ c†q0↑c
†
q0↓

(

{12}+ {34} − {13} − {24}
)

|0〉

with q0 = (0, 0), q1 = (0, π) and q2 = (π, 0). Clearly, this state belongs to A2.
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single-hole states are constructed from the Ne = 3 representations A3 and E1–E5 as

follows:

|Ω1σ
3 〉 = 1√

8

[

{14}
(

c†2σ + c†3σ
)

− {23}
(

c†1σ + c†4σ
)]

|0〉;

|Ω2σ
3 〉 =1

2

[

c†2σc
†
3σ

(

c†1σ̄ + c†4σ̄
)

+
sσ
2
{14}

(

c†2σ − c†3σ
)

− 1

2
[23]

(

c†1σ + c†4σ
)

]

|0〉;

|Ω3σ
3 〉 =1

2

[

c†1σc
†
4σ

(

c†2σ̄ + c†3σ̄
)

+
sσ
2
{23}

(

c†1σ − c†4σ
)

− 1

2
[14]

(

c†2σ + c†3σ
)

]

|0〉,

where σ(σ̄) =↑, ↓ (↓, ↑) and s↑,↓ = ±1. This phase appears in Ω2σ
3 and Ω3σ

3 because

of symmetry properties of the Clebsch-Gordan coefficients. The transition matrix

elements of the fermion operators are computed straightforwardly:

• Transition |Ω2〉 → |Ω3〉:

c†iσ|Ω2〉 =
1√
12

∑′

j<l

{jl}c†iσ|0〉 =
3

∑

l=1

〈Ωlσ
3 |c†iσ|Ω2〉|Ωlσ

3 〉,

where the prime indicates absence of the i-the term in the sum. We have row-

wise:

〈Ωlσ
3 |c†1σ|Ω2〉 =

{

− 1√
6
, 0,

sσ√
3

}

; 〈Ωlσ
3 |c†2σ|Ω2〉 =

{

1√
6
,
sσ√
3
, 0

}

;

〈Ωlσ
3 |c†3σ|Ω2〉 =

{

1√
6
, − sσ√

3
, 0

}

; 〈Ωlσ
3 |c†4σ|Ω2〉 =

{

− 1√
6
, 0, − sσ√

3

}

.

• Transition |Ωs
4〉 → |Ω3〉:

ciσ|Ωs
4〉 =

sσ
2
c†(C2i),σ̄

∑′

j<l

{jl}|0〉 =
3

∑

l=1

〈Ωlσ̄
3 |ciσ|Ωs

4〉|Ωlσ̄
3 〉.

Here C2i denotes a site opposite with respect to i, i.e. (1, 4) and (2, 3) (see

Fig. 3.1(a)), and the prime means that indices i and C2i are not included in

the sums, which therefore contain only one term each. The matrix elements are
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given by:

〈Ωlσ̄
3 |c1σ|Ωs

4〉 =
{

− sσ√
8
, 0,

1

4

}

; 〈Ωlσ̄
3 |c2σ|Ωs

4〉 =
{

sσ√
8
,
1

4
, 0

}

;

〈Ωlσ̄
3 |c3σ|Ωs

4〉 =
{

sσ√
8
, −1

4
, 0

}

; 〈Ωlσ̄
3 |c4σ|Ωs

4〉 =
{

− sσ√
8
, 0, −1

4

}

.

• Transition |Ωd
4〉 → |Ω3〉:

ciσ|Ωd
4〉 =

1√
12

∑′

j<l

(

c†(C2i),σ
c†jσ̄c

†
lσ̄ − c†(C2i),σ̄

[jl]
)

|0〉 =
3

∑

l=1

〈Ωlσ̄
3 |ciσ|Ωd

4〉|Ωlσ̄
3 〉,

where notations are the same as above. The matrix elements have the form:

〈Ωlσ̄
3 |c1σ|Ωd

4〉 =
{

0,

√
3

4
, 0

}

; 〈Ωlσ̄
3 |c2σ|Ωd

4〉 =
{

0, 0,

√
3

4

}

;

〈Ωlσ̄
3 |c3σ|Ωd

4〉 =
{

0, 0, −
√
3

4

}

; 〈Ωlσ̄
3 |c2σ|Ωd

4〉 =
{

0, −
√
3

4
, 0

}

.

We are now in position to actually compute the second-order effective Hamiltonian

Heff . As already discussed in the main text we identify an Ω2-type plaquette with

the local vacuum state, |0〉i, and an Ωα
4 -type cluster with the one boson state, |1α〉i =

b†iα|0〉i, where α = s or d denotes the boson flavor. In general, there are two types

of processes: boson hopping and four-boson interactions. Both may involve a flavor

change. Since the two half-filled GS have different symmetries under a π/4 rotation,

the amplitudes which describe a flavor change will depend on direction: there will be

a phase difference of π between them. On the contrary, the diagonal matrix elements

are “isotropic”. Here we shall compute Heff only for the tetrahedral lattice.

Let us consider the two plaquettes with numbered sites in Fig. 3.1(a) and denote

the one on the left as plaquete 1 and the right one – as plaquette 2. The amplitudes

corresponding to the hopping and exchange processes, shown in Fig. 3.4(a), can be

computed as follows.
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• Exchange: 2142 → 3132 → 214
′
2

The first transition is realized by the operator:

T1 = −τ1
∑

σ

c†1,2σc2,3σ − τ2
∑

σ

(

c†1,1σc2,1σ + c†1,4σc2,4σ
)

,

while the second transition is effected by the conjugate T2 = T †1 . In these

expressions the three indices denote respectively the plaquette, a site within

this plaquette, and the spin. Using the above-computed matrices of c-operators

we have:

T1|Ω2〉1|Ωs
4〉2 = − 1

4
√
3

{

(τ1 + 2τ2)
[

|Ω1↑
3 〉1|Ω1↓

3 〉2 − |Ω1↓
3 〉1|Ω1↑

3 〉2
]

−

− τ1
[

|Ω2↑
3 〉1|Ω2↓

3 〉2 − |Ω2↓
3 〉1|Ω2↑

3 〉2
]

+

+ 2τ2
[

|Ω3↑
3 〉1|Ω3↓

3 〉2 − |Ω3↓
3 〉1|Ω3↑

3 〉2
]

−

− τ1√
2

[

|Ω1↑
3 〉1|Ω2↓

3 〉2 + |Ω1↓
3 〉1|Ω2↑

3 〉2
]

+

+
√
2τ1

[

|Ω2↑
3 〉1|Ω1↓

3 〉2 + |Ω2↓
3 〉1|Ω1↑

3 〉2
]

}

and

T1|Ω2〉1|Ωd
4〉2 = −1

4

{

− τ1√
2

[

|Ω1↑
3 〉1|Ω3↓

3 〉2 + |Ω1↓
3 〉1|Ω3↑

3 〉2
]

−

− τ1
[

|Ω2↑
3 〉1|Ω3↓

3 〉2 − |Ω2↓
3 〉1|Ω3↑

3 〉2
]

+

+ 2τ2
[

|Ω3↑
3 〉1|Ω2↓

3 〉2 − |Ω3↓
3 〉1|Ω2↑

3 〉2
]

}

.

Using these expressions we see that V eff
s←d = V eff

d←s = 0, while the diagonal matrix

elements are given by the second line of Eq. (3.3).

• Hopping: 2142 → 3132 → 4′122

The first process is defined by the same kinetic energy term T1 as above. How-
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ever, now the second transition is described by the same operator: T2 = T1. In

order to compute teff , we need to establish how T †1 acts on the final states:

T †1 |Ωs
4〉1|Ω2〉2 =

1

4
√
3

{

− (τ1 + 2τ2)
[

|Ω1↑
3 〉1|Ω1↓

3 〉2 − |Ω1↓
3 〉1|Ω1↑

3 〉2
]

+

+ τ1
[

|Ω2↑
3 〉1|Ω2↓

3 〉2 − |Ω2↓
3 〉1|Ω2↑

3 〉2
]

−

− 2τ2
[

|Ω3↑
3 〉1|Ω3↓

3 〉2 − |Ω3↓
3 〉1|Ω3↑

3 〉2
]

−

−
√
2τ1

[

|Ω1↑
3 〉1|Ω2↓

3 〉2 + |Ω1↓
3 〉1|Ω2↑

3 〉2
]

+

+
τ1√
2

[

|Ω2↑
3 〉1|Ω1↓

3 〉2 + |Ω2↓
3 〉1|Ω1↑

3 〉2
]

}

and

T †1 |Ωd
4〉1|Ω2〉2 =

1

4

{

τ1√
2

[

|Ω3↑
3 〉1|Ω1↓

3 〉2 + |Ω3↓
3 〉1|Ω1↑

3 〉2
]

+

+ τ1
[

|Ω3↑
3 〉1|Ω2↓

3 〉2 − |Ω3↓
3 〉1|Ω2↑

3 〉2
]

−

− 2τ2
[

|Ω2↑
3 〉1|Ω3↓

3 〉2 − |Ω2↓
3 〉1|Ω3↑

3 〉2
]

}

.

Again, it is easy to convince yourself that teffs←d = teffd←s = 0, and the diagonal

hopping amplitudes are shown in the first line of Eq. (3.3).

3.7 Appendix C: HMF method for hard-core

bosons

The application of the hierarchical mean-field method (HMF) developed in Chap.

2 to the boson Hamiltonian (3.2) is rather straightforward and is analogous to the

way it was used for spin systems. The HMF scheme automatically includes simpler

semiclassical approaches to multi-flavor hard-core boson systems [106].

Recall that the effective model (3.2) is defined on a square “superlattice”, formed
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by the tetrahedra (see Fig. 3.1(a)). Therefore, a natural cluster degree of freedom is

a four-site square. The entire superlattice is covered by these blocks as shown in Fig.

2.1(b) (with J2 = 0, of course). With the aid of Eq. (3.3) the Hamiltonian (3.2) can

be written as:

H =−
∑

〈ij〉
σ=s,d

tσ
(

b†iσbjσ + b†jσbiσ
)

+ (Vs + Vd)
∑

〈ij〉
ninj−

− Vs − Vd
2

∑

〈ij〉

[

(1− ni)S
z
j + (1− nj)S

z
i

]

− µ
∑

i

ni = H� +Hint,

where Vσ = Vσσ, tσ = tσσ, S
z
i = nis − nid, and H� and Hint describe isolated clusters

and intercluster interaction, respectively. Using the site numbering, shown in Fig.

2.1(b), we represent these two terms in the form (see Sec. 2.2):

H� =−
∑

σ

tσ
[

(b†1σ + b†4σ)(b2σ + b3σ) + (b†2σ + b†3σ)(b1σ + b4σ)
]

+

+
(

Vs + Vd
)(

n1 + n4

)(

n2 + n3

)

− µ
(

n1 + n4 + n2 + n3

)

−

− Vs − Vd
2

{

[(1− n1) + (1− n4)]
(

Sz
2 + Sz

3

)

+ [(1− n2) + (1− n3)]
(

Sz
1 + Sz

4

)}

and

Hint =−
∑

σ

tσ
4

[

(b†1σb7σ + sym) + (b†2σb8σ + sym) + (b†3σb5σ + sym) + (b†4σb6σ + sym)+

+ (b†2σb5σ + sym) + (b†4σb7σ + sym) + (b†1σb6σ + sym) + (b†3σb8σ + sym)
]

+

+
Vs + Vd

4

[

(n1 + n4)(n6 + n7) + (n2 + n3)(n5 + n8)
]

−

− Vs − Vd
8

{

[(1− n1)S
z
7 + sym] + [(1− n2)S

z
8 + sym]+

+ [(1− n2)S
z
5 + sym] + [(1− n4)S

z
7 + sym]+

+ [(1− n3)S
z
5 + sym] + [(1− n4)S

z
6 + sym]+

+ [(1− n1)S
z
6 + sym] + [(1− n3)S

z
8 + sym]

}

,
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where “sym” denotes terms with interchanged site indices, e.g. in the first line it

means b†7σb1σ, etc.

Following the prescription of Chap. 2, the state of the entire system is written as

a direct product of single-cluster ground states:

|GS〉 =
∏

cl

|ψ0〉 =
∏

cl

(

∑

a

Ra|a〉
)

,

where {|a〉, a = 1 . . . 34} is a basis in the Fock space of a cluster and Ra are variational

parameters. Minimizing the expectation value 〈GS|H� + Hint|GS〉 with respect to

these parameters, we arrive at the self-consistent equation similar to Eq. (2.5). Its

numerical solution leads to the phase diagram shown in Fig. 3.4(b).
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Chapter 4

Magneto-electric coupling in

charge-frustrated multiferroics

In this chapter we discuss magneto-electric phenomena in charge-ordered multiferroic

materials. By constructing a minimal effective model which incorporates lattice frus-

tration, unscreened Coulomb and superexchange interactions, and spin-orbit effects,

we show that:

• The order-from-disorder mechanism stabilizes a ferroelectric charge order-

ing;

• Double exchange and spin-orbit interactions lead to a multiferroic phase

characterized by coupled collinear ferrimagnetism and ferroelectricity;

• This coupling is manifested in a finite magneto-electric coefficient, which is

strongly enhanced around the ferrimagnetic transition temperature.
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4.1 Introduction

Order-from-disorder is a fundamental physical mechanism through which an ordered

ground state (GS) is selected out of a degenerate classical manifold by quantum

or thermal fluctuations. This mechanism is best known in the theory of frustrated

magnets [13], where the classical GS degeneracy is caused by lattice frustration or

conflicting interactions. However, the order-from-disorder physics also manifests itself

in itinerant systems, for instance in the double-exchange model [107]. Another class

of systems where quantum and thermal fluctuations play a central role in stabilizing

an ordered GS is the so-called charge-frustrated multiferroics, whose ferroelectric

properties result from the charge-ordering, i.e. formation of the charge-density wave

(CDW) [28, 108] state. A representative family of materials are the triangular lattice

compounds RFe2O4 with R being a rare-earth element.

Out of this family, perhaps the most well-characterized member is the lutetium-

based LuFe2O4 [30, 31]. As we already mentioned in Sec. 1.1.4, this material has a

layered structure with three FeO triangular double layers (TLL) per tetragonal unit

cell (see Fig. 1.5(a)). Since the nominal iron valence is +2.5, there are equal amounts

of Fe2+ and Fe3+ ions within each TLL. In the temperature interval 320K . T . T0 =

500K X-ray measurements indicate the presence of a two-dimensional commensurate

CDW [30]. Below TCO ≈ 320K the interplay between lattice frustration, Coulomb

repulsion, and thermal fluctuation leads to a slightly (∼ 8%) incommensurate charge

ordering accompanied by the charge redistribution between individual layers [31, 109,

110, 111, 112]. Therefore, each TLL aquires a macroscopic electric polarization. At

TN ≈ 250K the ferrimagnetic (FiM) order emerges [113, 114] and the system becomes

multiferroic. The pronounced anomaly in the electric polarization curve [31] around

TN (see Fig. 1.5(b)) suggests a significant coupling between the charge and magnetic

orders [115]. Indeed, the electric control of magnetization was realized in [116], and

the magnetic-field control of charge ordering was demonstrated in [117].
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Discovery of these intriguing properties stimulated a surge of theoretical activity.

The stability of charge ordering in LuFe2O4 and its coupling to magnetism was inves-

tigated in [118, 119] using ab initio and Monte-Carlo simulations, and in [120] within

the Landau theory. In Refs. [121, 122] an effective model approach was used and

it was demonstrated that emergence of the FiM order indeed strongly enhances the

electric polarization, in agreement with experimental observations.

However, in the analysis of [121, 122] two important ingredients were missing.

First, the authors neglected quantum fluctuations associated with charge transfer

processes, which led to subtle stability of the CDW order at low temperatures. The

importance of electron hopping terms in the model Hamiltonian was later highlighted

in [108], where quantum fluctuations were shown to actually stabilize the “correct”

charge structure. Second, the authors ignored the spin-orbit (SO) interaction in iron,

and concluded that the Fe2+ ions possess an orbital degree of freedom which orders

at low temperature. However, the single-atom SO coupling constant for Fe is quite

sizable compared to both TCO and TN : ∆SO ∼ 0.0043Ry ∼ 0.01 eV ∼ 100K [123].

The SO coupling lifts the orbital degeneracy of Fe2+ and causes the easy-axis magnetic

anizotropy in LuFe2O4 [112].

In the present chapter we revisit the problem of charge ordering and magneto-

electric phenomena in frustrated ferroelectrics. Using LuFe2O4 as a prototype, we

present a theory of multiferroic behavior, which takes into account the Coulomb in-

teraction, magnetic superexchange and spin-orbit effects, and focuses on the interplay

between quantum fluctuations and geometric frustration. By identifying the relevant

energy scales we derive a minimal multi-band effective model which includes coupled

charge and spin degrees of freedom, and investigate its phase diagram. We show

that order-from-disorder stabilizes a charge ordering with a finite electric polariza-

tion. Due to the double-exchange mechanism the onset of the FiM order leads to

an anomaly in the temperature dependence of the electric polarization, qualitatively
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similar to the observations of Ref. [31] (Fig. 1.5(b)). We also demonstrate that in this

temperature region around TN the electric polarization of the system is very sensitive

to an external magnetic field.

4.2 Low-energy theory

In this section we shall formulate an effective model which contains basic physical in-

gredients, necessary to describe multiferroic properties of charge-frustrated materials.

Although the present study is motivated by LuFe2O4, we emphasize that our main

goal is illustration of the physical mechanism responsible for multiferroic properties

of this and related compounds, and not fitting of the experimental data. Therefore,

our presentation will ignore certain properties of LuFe2O4. For example, we focus on

a single TLL, and disregard inter-TLL charge transfer and exchange coupling. This

approximation is justified because of the large separation between two neighboring

TLLs1.

4.2.1 Energy scales

In each TLL there are equal amounts of iron ions Fe2+ and Fe3+ with electronic con-

figurations [Ar]3d54s0 and [Ar]3d64s0, respectively. The atomic terms are determined

using Hund’s rules [4]: 6S5/2 for Fe
3+ and 5D4 for Fe

2+. We consider the corresponding

Coulomb energy scale, EH , as a dominant energy scale in the problem.

An iron ion experiences a crystal field with the symmetry group D3d (R3̄m).

Consequently the 3d shell is split into two doublets and one singlet [4]. The doublets

have the symmetry {dx2−y2 , dxy} ∼ Y2,±2 and {dxz, dyz} ∼ Y2,±1 (Ylm are the spherical

harmonics). The singlet transforms like 3z2 − r2 ∼ Y1,0. The separation between

these three groups of states, ∆cr, is the second dominant energy in the problem.

1However, the inter-TLL coupling is relevant for stabilizing the observed three-dimensional anti-
ferroelectric order [110] and spin structures [113] in LuFe2O4.
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There seems to be an uncertainty regarding orbital symmetry of the ground state

(GS) doublet. In [118] and [111] the lowest doublet is claimed to have L = 2 and

ML = ±2, i.e. {dx2−y2 , dxy}. However, the X-ray absorption measurements presented

in [112] indicate that the doublet is actually {dxz, dyz} with L = 2 and ML = ±1.

This distinction is important, because in general the hopping of a d-electron between

two Fe ions proceeds through the 2p shell of the neighboring oxygen atom, and the

corresponding amplitude, of course, depends on the symmetry of the iron GS. Since

we are not interested in close modelling of a particular material, below it is assumed

that the GS doublet has a {dx2−y2 , dxy} symmetry. Moreover, we neglect the spin-

orbit (SO) coupling in oxygen. Thus, in the process of hopping between two iron

ions, the electron spin is preserved.

On the contrary, the SO interaction in Fe is quite large compared to the exchange

interactions, as we already noted above. Since the Fe3+ term has L = 0 it remains

unaffected by the SO coupling. However, the Fe2+ D-term will split. There are 2(2S+

1) = 10 states of the low-valence iron. Within this subspace the SO Hamiltonian,

HSO = −∆SO(LS), has eigenvalues2 ǫMS
= −MLMS∆SO with ML = ±2 and MS =

−2 . . . 2. The lowest doublet has maximum absolute values of bothML andMS. Thus,

the SO interaction lifts the orbital degeneracy of a Fe2+ ion, with the separaton

between splitted states being ∼ ∆SO. In order to simplify our analysis we only

consider the two lowest Fe2+ states and ignore the rest. This assumption is justified

if the bandwidth t is smaller than the SO splitting, which is certainly true in the

insulating phase of LuFe2O4.

To summarize, there are three dominant energy scales in the problem: EH ≫

∆cr ≫ ∆SO. We also assume that all of these energies are large compared to the

bandwidth, at least in the interesting part of the phase diagram, where LuFe2O4 is

an insulator.

2Since the outer d-shell is more than half-filled, ∆SO is positive.
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d1

d2
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e1

e2

Figure 4.1: (a) The Fe 3d orbital, split by the crystal field (splitting ∆cr). Left:
6S5/2

Fe3+ term. High-energy core states have total spin 3/2, while two lowest states com-
bine into a S = 1 multiplet. Right: Two degenerate low-energy Fe2+ configurations.
Degenerate states 1 and 2 have ML = ∓2. (b) Triangular double layer with 2N sites.
Gray (black) color denotes the bottom (top) layer. Vectors e1,2 constitute the Bravais
basis. Vectors di connect inter-layer NN sites and are defined as d1 = 1

3
(2e1 − e2),

d2 =
1
3
(2e2 − e1) and d3 = −1

3
(e1 + e2). The z-axis is perpendicular to the TLL.

4.2.2 Local Hilbert space and degrees of freedom

The states of a Fe3+ ion with S = 5/2 can be classified according to the total spin

projection and written using Clebsh-Gordan coefficients [56]:

∣

∣

∣

∣

5

2
,±5

2

〉

=

∣

∣

∣

∣

3

2
,±3

2

〉

|1,±1〉;
∣

∣

∣

∣

5

2
,±3

2

〉

=

√

2

5

∣

∣

∣

∣

3

2
,±3

2

〉

|1, 0〉+
√

3

5

∣

∣

∣

∣

3

2
,±1

2

〉

|1,±1〉; (4.1)

∣

∣

∣

∣

5

2
,±1

2

〉

=

√

1

10

∣

∣

∣

∣

3

2
,±3

2

〉

|1,∓1〉+
√

3

5

∣

∣

∣

∣

3

2
,±1

2

〉

|1, 0〉+
√

3

10

∣

∣

∣

∣

3

2
,∓1

2

〉

|1,±1〉.

with S = 1 states given by:

|1,−1〉 = c†1↓c
†
2↓|0〉; |1, 0〉 = 1√

2

(

c†1↑c
†
2↓ + c†1↓c

†
2↑
)

|0〉; |1, 1〉 = c†1↑c
†
2↑|0〉, (4.2)
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where operators c†1,2σ create an electron in the state 1 or 2 with spin σ =↑, ↓ (see left

panel in Fig. 4.1(a)) and |0〉 is the vacuum state. We shall denote the above six states

as
∣

∣Fe3+α
〉

with α = −5/2 . . . 5/2. There are two low-energy degenerate configurations

for the Fe2+ ion: with MS = ±2, shown in the two right panels of Fig. 4.1(a). These

will be denoted as
∣

∣Fe2+±
〉

. It follows that per site within a TLL there are 2 + 6 = 8

states.

When choosing degrees of freedom which parametrize states within local Hilbert

space it is important to take into account not only the local, i.e. generalized exclusion

principle, but also the exchange statistics [101]. In other words, one should decide

whether operator degrees of freedom, which belong to different sites, commute or

anticommute. We remind that physical processes in our problem amount to hopping

of a real electron between two iron ions. As a result of this process, the state and/or

valence of an ion changes, but there is no transport of the ion as a whole. Hence, it is

not straightforward to choose either fermionic, or bosonic language. Such choice, in

general, depends on the approximation and desired physical observables. For instance,

a bosonic language lends itself to a semiclassical approximation.

Since it is always easier to work with finite-dimensional Hilbert spaces, here we

choose to represent states of both ions as Schwinger fermions [57]. First, we identify

an empty site i with the local vacuum |0〉i. The states of an Fe2+ ion then correspond

to a pseudospin-1/2 Schwinger fermion ciζ:

∣

∣Fe2+ζ
〉

i
= c†iζ |0〉i

with ζ = ±. The states of a spin-5/2 Fe3+ ion are represented by 6-flavored Schwinger

fermions fiα:
∣

∣Fe3+α
〉

i
= f †iα|0〉i.

Since each site must be occupied either by Fe2+ or Fe3+, these operators obey the
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constraint:
∑

ζ=±
c†iζciζ +

5/2
∑

α=−5/2
f †iαfiα = 1. (4.3)

4.2.3 Effective model

As we already mentioned, the physical processes involve hopping of a real electron

between lowest 3d orbitals of the neighboring iron ions. In Fig. 4.1(a) these states are

denoted as 1 and 2. For simplicity, we shall assume that amplitudes for the electron

hopping 1σ → 1σ and 1σ → 2σ are identical and equal to t.

There are two types of effective low-energy processes: (i) charge transfer

∣

∣Fe2+
〉

i

∣

∣Fe3+
〉

j
→

∣

∣Fe3+
〉

i

∣

∣Fe2+
〉

j
,

and (ii) various exchanges

∣

∣Fen+
〉

i

∣

∣Fem+
〉

j
→

∣

∣Fen+
〉

i

∣

∣Fem+
〉

j

with n andm equal to 2 or 3. Derivation of the corresponding matrix elements is given

in Appendix A at the end of this chapter. Here we just present the final expression

for the effective Hamiltonian:

Heff = −
∑

l,l′=1,2
〈ij〉, ζ

tll′

[

c†l,iζcl′,jζ

(

fl,i 5ζ
2

f †
l′,j 5ζ

2

+
1

5
fl,i 3ζ

2

f †
l′,j 3ζ

2

)

−

− 1√
5
c†l,iζcl′,jζ̄

(

fl,i 3ζ
2

f †
l′,j 5ζ̄

2

+ fl,i 5ζ
2

f †
l′,j 3ζ̄

2

)

+ h.c.

]

+ (4.4)

+
∑

l,l′

〈ij〉

[

Vll′n
c
l,in

c
l′,j + J33

ll′

(

Sl,iSl′,j − S2nf
l,in

f
l′,j

)

− J22
ll′ s

z
l,is

z
l′,j + J23

ll′

(

Sz
l,is

z
l′,j + szl,iS

z
l′,j

)]

,

where l, l′ = 1, 2 label layers, ζ̄ = −ζ , 〈ij〉 denote inter- and intra-layer nearest-

neighbor (NN) links, depending on the values of l and l′ (see Fig. 4.1(b)), the sums
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extend over all links, and S = 5/2.

In general, the model (4.4) has 10 independent parameters: Xll′ = xδll′ + x′σx
ll′

with X = {t, V, J33, J23, J22}, and x and x′ being intra- and inter-layer couplings, re-

spectively. The correlated hopping amplitudes, tll′, describe charge transfer processes.

The V -term corresponds to an unscreened NN Coulumb repulsion Vll′ between Fe2+

ions. The rest of the terms in Eq. (4.4) have a magnetic origin: J33
ll′ , the antiferro-

magnetic Heisenberg interactions between NN core Fe3+ spins Sl,i = Sα′αf
†
l,iα′fl,iα;

J23
ll′ and J22

ll′ , Ising-like NN terms between Fe3+ and Fe2+ spins szl,i = nc
l,i+ − nc

l′,i−

(with nc
l,iζ = c†l,iζcl,iζ and similarly for nf

l,iα). All Jnm are positive. As explained in

Appendix A, signs of Fe2+-Fe2+ and Fe2+-Fe3+ exchange interactions are ferro- and

antiferromagnetic, respectively. The Ising terms are a manifestation of the SO-related

easy-axis magnetic anisotropy: the (real) spin at each Fe2+ site is ±2 and cannot be

flipped by a single electron transfer (thus, there are no XY -terms). The fractional

coefficients in the hopping part of Eq. (4.4) (first two lines) appear because of the

Clebsch-Gordan coefficients for combining spins 1 and 3/2 into the spin-5/2 Fe3+ core

(see Eq. (4.1)). Finally, we note that the model, thus obtained, is physically very

similar to the strong Hund coupling limit of the quantum Kondo lattice Hamiltonian,

discussed in [124].

4.3 Mean-field approximation

The effective Hamiltonian (4.4) describes an interacting system of fermions, coupled

to spin-5/2 degrees of freedom. In order to unveil its phase diagram, one has to resort

to approximate techniques. Here we use a simple Hartree-Fock-like mean-field (MF)

decoupling, which is nevertheless sufficient to capture the interplay between electric

and magnetic orderings. This approximation is guided by experiments in LuFe2O4.

In particular, we assume the observed periodicity of charge ordering in the GS. In
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the reciprocal lattice basis, generated by {ei} (Fig. 4.1(b)), the ordering wavevector

is given by:

Q0 =

(

2π

3
,
4π

3

)

. (4.5)

We note that in the limit, when only V 6= 0 in Eq. (4.4), there exist other

degenerate GSs with a different set of Q-vectors [122]. However, hopping terms and

exchange interactions in (4.4) lift this degeneracy and select a GS with the wavevector

(4.5) [108].

Let us define the Fourier-transformed operators as:

cl,iζ =
1√
N

∑

k

eikx
l
icl,kζ

with N being the number of sites per layer (thus, there are 2N sites in a TLL). Then,

our MF theory is parametrized by the following expectation values:

C l′l
ζ′ζ(kQ) =

〈

c†l′,kζ′cl,k+Qζ

〉

, F l′l
α′α(kQ) =

〈

f †l′,kα′fl,k+Qα

〉

, (4.6)

where Q = (0,±Q0) and 〈· · · 〉 denotes the thermal average 〈A〉 = TrwA with w

being the density matrix (Gibbs distribution). Note the absence of mixed averages of

the form 〈c†l′,kζ′fl,k+Qα〉. This guarantees that the physical picture, discussed below,

remains unchanged, should a bosonic language have been chosen instead of a fermionic

(i.e. fl,iα) one.

In terms of averages (4.6), the MF Hamiltonian for each fermion type can be

written as:

Hc
MF =

∑

kQ

ϕc
l′ζ′,lζ(k,Q)c†l′,k+Qζ′cl,kζ, Hf

MF =
∑

kQ

ϕf
l′α′,lα(k,Q)f †l′,k+Qα′fl,kα (4.7)
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with

ϕc
l′ζ′,lζ(k,Q) =− tl′l

N

∑

q

Γl′l
k−q

{

δζ′ζ

[

F ll′
5ζ
2

5ζ
2

(qQ) +
1

5
F ll′

3ζ
2

3ζ
2

(qQ)

]

−

− δζ′ζ̄√
5

[

F ll′
3ζ
2

5ζ̄
2

(qQ) + F ll′
5ζ
2

3ζ̄
2

(qQ)
]

}

+

+
δl′l
N

∑

q,l′′

Γll′′

Q

{

δζ′ζ
[

Vll′′δζ1ζ2 − J22
ll′′σ

z
ζ1ζ2

]

C l′′l′′

ζ1ζ2
(qQ) + J23

ll′′σ
z
ζ′ζS

z
α′αF

l′′l′′

α′α (qQ)

}

−

− 1

N

∑

q

Γl′l
k−q

[

Vl′lδζζ1δζ′ζ2 − J22
l′l σ

z
ζζ1σ

z
ζ′ζ2

]

C ll′

ζ1ζ2(qQ),

and

ϕf
l′α′,lα(k,Q) =− tl′l

N

∑

q,ζ

Γl′l
k−q

{

δα′α

[

δα 5ζ
2

+
1

5
δα 3ζ

2

]

C ll′

ζζ(qQ)−

− 1√
5

[

δ
α′ 5ζ̄

2

δα 3ζ
2

+ δ
α′ 3ζ̄

2

δα 5ζ
2

]

C ll′

ζζ̄(qQ)

}

+

+
δl′l
N

∑

q,l′′

Γll′′

Q

{

J23
ll′′S

z
α′ασ

z
ζ′ζC

l′′l′′

ζ′ζ (qQ) + J33
ll′′v

α′α1

αα2
F l′′l′′

α1α2
(qQ)

}

−

− J33
l′l

N

∑

q

Γl′l
k−qv

α′α1

α2α
F ll′

α1α2
(qQ),

where we assume summation over repeated indices, and

vα
′β′

αβ = Sα′αSβ′β − S2δα′αδβ′β, Γl′l
k =

∑

dl′l

(

eidl′lk + e−idll′k
)

,

dll = {ei} and d12 = −d21 = {di} (see Fig. 4.1(b)).

The MF approximation replaces the exact local constraint (4.3) with a requirement

to conserve an average particle number. Since there are equal amounts of Fe2+ and

Fe3+ ions in a TLL, we have:

1

N

∑

l,i,ζ

〈nc
l,iζ〉 =

1

N

∑

l,i,α

〈nf
l,iα〉 = 1.
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To satisfy this condition, we introduce two chemical potentials, µc and µf , into the MF

Hamiltonian. The double site occupancy, which becomes possible at the MF level, is

eliminated by adding local repulsion (Hubbard-like) terms between all fermion species,

with a large value of U . Collecting all above contributions, the full MF Hamiltonian

can be written as:

HMF = Hc
MF +Hf

MF − µc

∑

l,i,ζ

nc
l,iζ − µf

∑

l,i,α

nf
l,iα + U

∑

i

(

nc
in

c
i + nf

i n
f
i + nc

in
f
i

)

.

This Hamiltonian can now be diagonalized self-consistently on a finite TLL. Vari-

ous observables are determined in terms of the converged averages (4.6). The primary

quantity of interest for us is the electric polarization, defined as an absolute value of

the inter-layer charge imbalance (z-axis points perpendicular to the TLL), i.e.:

Pz =
1

N

∣

∣

∣

∣

∑

q,ζ

[

C11
ζζ (q0)− C22

ζζ (q0)
]

∣

∣

∣

∣

. (4.8)

4.4 Results

We performed numerical self-consistent diagonalization of HMF in a N × N TLL

with N = 12 and periodic boundary conditions in the xy plane3. This system size is

sufficient to approximate the thermodynamic limit, because the characteristic CDW

unit cell, shown in Fig. 1.5(c) has dimensions
√
3 ×

√
3. In fact, quantities, like

chemical potentials, do not show any size dependence for larger values of N . At all

times, we keep the wavevector of the charge and spin density-wave equal to Q0.

The model (4.4) has a rich phase diagram, because of the large number of free

parameters (see discussion after Eq. (4.4)), whose investigation is quite complicated

and, for instance, requires relaxing the constraint on possible values of Q. Some

3We note, that since our system is not periodic in the z-direction, only Pz is well-defined. Po-
larizations in the x and y directions are in general not uniquely defined and are quite tedious to
compute (see [125] for details).
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discussion along these lines can be found in [122]. Since in the present work we have

a particular goal of understanding mechanism of the feedback, provided by magnetic

order on the electric polarization, below we shall fix parameters in Heff to certain

physically sane values and study the temperature-dependent phase diagram of the

model.

In units of the intra-layer hopping t, the parameters of Heff are as follows (the

primed quantities were defined after Eq. (4.4)):
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Note, that smallness of J33 and J23 is compensated by the large value of S = 5/2.

These parameters are chosen to be consistent with the data on LuFe2O4. For instance,

in this material V ′/V ∼ 1.2 [122] and inter-layer exchanges are quite small, compared

to the intra-layer ones [112]. However, we also checked that the general picture,

presented below, survives slight variations in the above parameters (so the system is

not fine-tuned).

4.4.1 Phase diagram

In the main panel of Fig. 4.2 we present the phase diagram of the system, featuring

the electric polarization (4.8) as a function of temperature T . The inset in the same
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Figure 4.2: Polarization (4.8) as a function of temperature. Shaded regions mark
different FiM phases: (a) Classical FiM with nominal values of spins at each site;
(b) Modulated FiM with opposite, but unequal spins of Fe3+ ions in the honeycomb
sublattice of the top layer; (c) Non-FiM phase. The corresponding spin patterns are
shown schematically in the right panel, with the same notations as in Fig. 1.5(c).
The size of crosses (circles) is proportional to magnitude of the local magnetization.
Empty Fe3+-sites in panel (c) indicate the absence of a definite spin direction. The
inset shows T -dependence of the CDW order parameters (4.9). The phase transition
at T0 is accompanied by collapse of the ferromagnetism of Fe2+ spins.

figure shows T -dependence of the CDW order parameters (OP):

nc
l,Q0

=
1

N

∑

k,ζ

〈

c†l,kζcl,k+Q0ζ

〉

, nf
l,Q0

=
1

N

∑

k,α

〈

f †l,kαfl,k+Q0α

〉

. (4.9)

The state with a finite polarization is always characterized by a robust CDW order.

On the contrary, due to the relative smallness of magnetic energy scales, in the same

T -range the system exhibits several FiM instabilities, associated with ordering of

the Fe3+ core spins. The corresponding phases are labelled as (a)–(c), and their

magnetic structure is shown schematically in the right panel of the figure. The FiM

state disappears at the Néel temperature, TN . This transition is accompanied by a
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pronounced feature in Pz(T ), which is qualitatively similar to the experimental curve,

shown in Fig. 1.5(b). The physical origin of this behavior is easy to understand by

looking at the structure of the effective Hamiltonian (4.4): absence of the Fe3+ spin

order assists inter-layer hopping and removes correlation between Fe3+ and Fe2+ ions,

due to the magnetic J23-terms. Also, similar to experiments of Ref. [30, 110], the

CDW disappears at a temperature T0, which is somewhat higher than the charge-

ordering temperature, TCO, associated with the onset of Pz.

However, there exists an important discrepancy between experimental picture in

LuFe2O4 and the results of our model calculations. Namely, the high-temperature

ferromagnetism (FM) of the Fe2+ spins, which coexists and disappears (at T = T0)

simultaneously with the CDW state. We believe that this can be attributed to a

combination of the Stoner effect (i.e. FM of a repulsive Fermi gas at the MF level)

and the FM nature of the interactions J22. Indeed, in our simulations we used the

local on-cite repulsion U , which is the dominant energy scale in the problem. Since we

describe an Fe2+ ion by a pseudospin-1/2 fermion variable, the system prefers to get

rid of this scale by polarizing the c-type fermions. Thus, the above behavior appears

to be an artifact of our MF approximation.

4.4.2 Magneto-electric coupling

Temperature dependence of the polarization, Pz(T ), discussed above, certainly implies

a coupling between CDW and FiM orderings in the model (4.4). In order to make this

statement quantitatively more precise, we computed the magneto-electric coefficient

αz =
∂Pz

∂h
,
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Figure 4.3: (a) Magnetic field dependence of the polarization. Notice the suppression
of the anomaly around TN in Pz(T ) with increasing h. (b) Pz(h/t) for two values of
T in the FiM and non-FiM regions, with corresponding magneto-electric coefficients.

i.e. the derivative of Pz with respect to an external Zeeman magnetic field4, whose

effect is described by the following correction to Heff [122]:

δHeff = −h
∑

l,i

(

Sz
l,i + szl,i

)

,

In particular, we would like to address the question regarding the most optimal tem-

perature regime, which maximizes magneto-electric coupling.

4Because the state of the system is characterized by a non-zero CDW OP, the electron hopping
is strongly suppressed and we can ignore orbital part of the magnetic field.
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The results of this calculation are presented in Fig. 4.3. Since the polarization is

caused by the charge ordering, the relevant energy scale is the NN Coulomb repulsion

V . The magnetism is associated with much lower energies. This separation of scales

leads to a weak dependence Pz(h) at low temperatures. However, with increased tem-

perature, the role of V is decreased. This fact allows for a more efficient manipulation

of the polarization with an external magnetic field. For example, the ratio between

two values of αz, taken at T1 = 1.57t and T2 = 3.23t, is αz(T2)/αz(T1) ∼ 10. In

other words, provided the model of Eq. (4.4) describes a real device, which employs

the magneto-electric effect, one would like to operate this system in the temperature

region (c) if Fig. 4.2. The possibility to manipulate the electric polarization with an

applied magnetic field in the non-magnetic phase of LuFe2O4 (at room temperature)

was demonstrated in [117].

4.5 Concluding remarks

Multiferroic materials with ferroelectricity due to charge-ordering are intriguing sys-

tems, demonstrating a subtle interplay between their electric and magnetic properties.

Theoretical investigation of the related magneto-electic phenomena turns out to be

quite challenging because of the importance of multiple bands in these systems and

the large number of degrees of freedom, which need to be taken into account. There-

fore, a combination of phenomenological and model methods is required, similar to the

one employed in this chapter. Our approach relies on the separation of energy scales

to identify degrees of freedom, relevant for the multiferroic behavior, and constructs

a minimal effective model, which couples those degrees of freedom.

By studying such effective model, motivated by the multiferroic LuFe2O4, we

demonstrated how frustration, associated with the triangular lattice geometry, non-

local Coulomb repulsion, and spin-orbit interaction, first stabilize the commensurate
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ferroelectric charge ordering and then a collinear ferrimagnetism, which coexists with

ferroelectricity. In this multiferroic phase the double-exchange (Hund) mechanism

provides a coupling between the corresponding order parameters.

This coupling manifests itself in a pronounced anomaly in the electric polarization

Pz around Néel temperature. Our conclusions qualitatively agrees with pyroelectric

current measurements in LuFe2O4, reported in [31]. The feedback on Pz, provided by

the emerging magnetism around TN , allows us manipulate the electric polarization

with an applied magnetic field h. We have quantified this effect by computing the

magneto-electric coefficient αz = ∂Pz/∂h, which is strongly enhanced around TN ,

compared to lower temperatures. The room-temperature magneto-electric effect in

LuFe2O4 was experimentally demonstrated in [117].

Finally, we would like to make a remark regarding the necessary set of physi-

cal ingredients, which should be present, in order for a given system to exhibit a

linear magneto-electric effect. From the discussion presented above, it follows that

electron correlations and multiple bands are absolutely necessary to stabilize a mul-

tiferroic phase. However, in a recent work [126] it was argued that a linear magneto-

electric coupling may be observed in non-correlated semiconductors (“topological in-

sulators”), characterized by a very peculiar band structure5. While this conjecture

was never confirmed experimentally, it remains an interesting direction for future

investigation.

4.6 Appendix A: Low-energy effective processes

As we already mentioned, effective low-energy processes, described by the model (4.4),

can be divided into two groups: (i) those involving a real charge transfer, and (ii)

exchange interactions, associated with virtual electron transitions. Below we consider

5We note that the tight-binding model, defined on a TLL with nearest neighbor hoppings, de-
scribes a metal for all t and t′.
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⇒⇒

Fe2+
+Fe3+

3/2Fe2+
+ Fe3+

3/2Fe2+
+ Fe3+

5/2 Fe2+
+Fe3+

5/2

⇒⇒

Fe2+
−Fe3+

5/2Fe2+
+ Fe3+

−3/2Fe2+
+ Fe3+

−5/2 Fe2+
−Fe3+

3/2

Figure 4.4: Possible channels for the electron transfer between Fe2+ and Fe3+ ions.
Upper (Lower) panel shows pseudospin preserving (flipping) processes.

these groups separately.

(i) Matrix elements for charge transfer

The charge transfer occurs between a Fe2+ and a Fe3+ ion via hopping of the real

electron between degenerate orbitals 1 and 2 (see Fig. 4.1(a)) of neighboring ions.

Although the electron spin is conserved in the process, the pseudospin ζ , which de-

scribes the state of a Fe2+ ion, can flip. If we denote the corresponding matrix

elements as τζ′ζ, then due to the time-reversal symmetry τ++ = τ−− and τ+− = τ−+.

A single-electron transfer can only change the spin projection of an ion by ±1/2. This
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⇔⇔

Figure 4.5: Virtual processes, leading to FM (left) and antiferromagnetic (right)
exchange interactions between Fe2+ ions.

means that transitions involving Fe3+±1/2 are prohibited6. The remaining channels are

schematically shown in Fig. 4.4. The amplitudes of the processes, shown in this

figure, are easily obtained using Eqs. (4.1) and (4.2):

• Pseudospin preserving transitions, τ++ = τ−−

τ++

(

5/2
)

= t, τ++

(

3/2
)

= −t/5,

where t is the hopping amplitude for the real electron and numbers in paren-

theses denote spin projections of the Fe3+ ion.

• Pseudospin flipping transitions, τ+− = τ−+

τ+−
(

−5/2
)

= τ+−
(

−3/2
)

= −t/
√
5.

Notations are the same as above.
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⇔⇔

Figure 4.6: Virtual processes, leading to FM (left) and antiferromagnetic (right)
exchange interactions between Fe2+ and Fe3+ ions.

(ii) Exchange interactions

There are three types of NN exchange couplings: Fe2+-Fe2+, Fe3+-Fe3+ and Fe2+-

Fe3+, which appear because of the virtual electron hopping between all (i.e. not just

lowest two) orbitals of the two ions. In general, all couplings have antiferro- and

ferro-magnetic contributions. In Figs. 4.5 and 4.6 we show an example of each of

these channels.

The “first-principle” derivation of Jnm
ll′ is quite tedious and requires the use of

a pd-type model, which includes not only iron ions, but also oxygen 2p orbitals. A

calculation along these lines was presented in [122].

Since here we are interested in the physical picture, corresponding to an inter-

play between electric and magnetic orders, we prefer to employ a simpler approach

to obtaining Jnm
ll′ . Namely, we use the low-temperature spin structures, which are

calculated by fitting experimental data in LuFe2O4 [112, 113], in order to extract

signs of Jnm
ll′ , and treat their magnitudes as free parameters. In this way we conclude

6For instance, if an electron hops from Fe2++ , it leaves behind a Fe3+ core with Sz = +5/2 or

+3/2. These states have zero overlap with
∣

∣Fe3+±1/2

〉

.
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that: J33
ll′ and J23

ll′ are antiferromagnetic, and J22
ll′ is FM, i.e.

J33
ll′ , J

23
ll′ > 0; J22

ll′ < 0.

This conclusion is also consistent with calculations of Naka et al. [122]. In the effective

Hamiltonian (4.4), we have explicitly separated the negative sign from J22
ll′ .
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Chapter 5

Conclusions

The interplay between lattice frustration and competing interactions leads to complex

behavior, rich phase diagrams and a variety of physical phenomena even in relatively

simple models. Studying these phenomena not only enhances our basic physics under-

standing, but also enables us to design systems and materials with novel properties.

These studies, however, often face substantial theoretical challenges, whose origin is

precisely the above complexity. In the present work we attempted to address some of

those challenges.

In Chap. 2 we introduced a non-perturbative variational technique, the hierar-

chical mean-field method, which was subsequently applied to several models of frus-

trated quantum magnets. By using the exact diagonalization of finite clusters, the

HMF approach treats different competing phases on an equal footing, thus providing

an unbiased framework for investigating strongly interacting systems. As a conse-

quence, one can use a single variational ground state wavefunction to describe the

entire phase diagram of a system of interest. In Secs. 2.2 and 2.4 we used the HMF

method to obtain zero-temperature phase diagrams of the J1-J2 and J-Q models.

Both of these systems exhibit a quantum paramagnetic phase, whose structure has

been under intense investigation in recent years. In our studies we unveiled the cor-
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related plaquette nature of non-magnetic states in both models, therefore definitively

ruling out possible dimer orderings, proposed in the previous works. In Sec. 2.3 we

revisited the problem of magnetization plateaux in the Shastry-Sutherland model.

These plateaux were observed in high magnetic field experiments in SrCu2

(

BO3

)

2

and stimulated a lot of theoretical debates. We were able to derive a set of necessary

stability conditions for a given plateau, which define a hierarchy of variational plateau

wavefunctions.

Frustration and long-range order are usually thought of as mutually exclusive

physical phenomena. Nevertheless, in some cases frustration can be employed to

actually stabilize an ordered state. In Chap. 3 we illustrate this mechanism by

studying superconductivity in the strongly repulsive Hubbard model on a specially

“engineered” lattice, made of weakly-coupled clusters with frustrating second neigh-

bor hoppings. Fine-tuning of these hopping amplitudes results in a ground-state

degeneracy, which effectively eliminates the effect of fermion repulsion and allows

magnetic fluctuations to establish a robust superconducting state. We also argued

that this peculiar phenomenon can be observed in experiments involving cold atoms

in optical lattices.

The key role of frustration in stabilizing an ordered state with fascinating prop-

erties was further demonstrated in Chap. 4, where we discussed magneto-electric

phenomena in frustrated charge-ordered multiferroics. Motivated by experiments in

LuFe2O4, we presented a theory of multiferroic behavior and magneto-electric effect,

driven by the order-from-disorder and double exchange mechanisms. We explicitly

showed how the coupling between electric and magnetic orders provides a means to

manipulate, e.g. electric properties with an external magnetic field.

Our work will hopefully help in addressing an important question regarding the

systematic manipulation of lattice frustration and strong correlations in a guided

design of novel materials with highly non-trivial properties.
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