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Abstract

Given a CAT(0) group G acting geometrically on a proper CAT(0)
space, we attempt to demonstrate that any torsion subgroup of G has
finite cardinality.

1 Introduction

Euclid’s fifth postulate, commonly referred to as the parallel postulate, states
that given a line ` and a point p not on ` there is exactly one line through p
that does not intersect `. When this postulate is removed, we allow for a much
larger class of metric spaces which can have peculiar properties. For example,
in hyperbolic geometry there are infinitely many lines through p that do not
intersect `. Furthermore, in elliptic geometry no such line exists since every line
through p will intersect `. Indeed, these are salient features of Hn, hyperbolic n-
space, and Sn, the n-sphere, respectively. Together, Hn, Sn, and En (Euclidean
n-space), are the model spaces of constant negative, positive, and 0 curvature,
respectively.

CAT(0) spaces are of particular interest because while they are incredibly
general, the lack of positive curvature provides us with many powerful tools. In
this paper, we are primarily concerned with CAT(0) groups, or groups which act
geometrically on proper CAT(0) spaces. More precisely, a CAT(0) group is a
subgroup of the group of isometries of a proper CAT(0) space that acts properly
discontinuously and cocompactly on the space. In studying these groups, one
natural question that arises is whether there can exist an infinite subgroup
consisting entirely of torsion (finite order) elements. Not only is this question
interesting in its own right, but an important cut point theorem by Eric Swenson
requires this to be true in order to complete his proof. For En, Bieberbach has
shown that no such infinite torsion subgroup can exist, and the same result
has been shown for δ-hyperbolic groups; we studied Olshanskii’s proof of this
theorem in great depth. CAT(0) spaces lie somewhere in between these two,
and a similar result is expected for CAT(0) groups.

We use various geometric approaches to arrive at a proof of this result. At
first, since the CAT(0) case most closely resembles the situation in δ-hyperbolic
groups, we attempted to follow Olshanskii’s proof substituting CAT(0) groups
for δ-hyperbolic groups. However, without word-hyperbolicity, word-processing
in the CAT(0) group became incredibly complicated very quickly. Instead, we
resorted to the geometry of CAT(0) spaces and examined how it must restrict
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the groups acting on them. Because Swenson’s proof requires only that torsion
subgroups fixing a point in the boundary at infinity to be finite, we assume
that our torsion subgroups do in fact have a fixed point in the boundary. Using
this assumption, we have derived many characteristics regarding the manner in
which torsion groups act on horospheres. While we have been unable to prove
the theorem in general, these characteristics have allowed us to show something
weaker about a torsion group T fixing a point c in the boundary at infinity. We
proved that if the boundary at infinity of the horosphere at c consists only of
the point c, the torsion subgroup can only be infinite if there exists an infinite
torsion group with a finite number of conjugacy classes, which is currently a
major open question in group theory.

2 Background

We provide the basic definitions that recur throughout this paper here.

Definition 2.1. Let (X, dx) and (Y, dy) be a metric spaces. An isometry
between X and Y is a map φ : X → Y such that ∀x, x′ ∈ X, dx(x, x′) =
dy(φ(x), φ(x′)). A (unit speed) geodesic in X is an isometry γ : I → X where I is
a connected subset of R. If I = [a, b], I = [a,∞), or I = R, then γ is a geodesic
segment, ray, or line, respectively.

Definition 2.2. Let X be a metric space. We call X a geodesic metric space if
∀x, x′ ∈ X there is a geodesic segment between x and x′, (ie ∃γ : [0, a]→ X such
that γ(0) = x and γ(a) = x′). If ∀x, x′ ∈ X this geodesic segment is unique, X
is a unique geodesic metric space.

The definition below for a CAT(0) space comes from [Ru].

Definition 2.3. Let (X, d) be a metric space. X is proper if closed metric balls
are compact. Let (X, d) be a proper complete geodesic metric space. If 4abc
is a geodesic triangle in X, then we consider 4āb̄c̄ in E2, a triangle with the
same side lengths, and call this a comparison triangle. Let 4abc be a geodesic
triangle in X. Then 4abc satisfies the CAT(0) inequality if for any comparison
triangle and any two points p, q on 4abc, the corresponding points p̄, q̄ on the
comparison triangle satisfy

d(p, q) ≤ dE2(p̄, q̄)

If every geodesic triangle in X satisfies the CAT(0) inequality, then we say X
is a CAT(0) space.

Remark 2.4. If (X, d) is a CAT(0) space, then the following hold:

(a) The distance function d : X ×X → R is convex.

(b) X is a unique geodesic metric space.

(c) X is contractible.

13



Definition 2.5. G is a CAT(0) group if there exists a CAT(0) space X such
that G is a subgroup of the group of isometries of X and G acts both properly
discontinuously and cocompactly on X. (G acts cocompactly if the fundamental
domain is compact.)

Example 2.6. A simple example of a CAT(0) group is Z2 with the action on R2

by translations.

Definition 2.7. Let G be a CAT(0) group, and let L be a proper subgroup.
Let S be a set of generators such that < S >= L. If g ∈ G \ L, then the group
< S ∪ g > will be called the extension of L by g. For notational convenience,
this group will be written as Ext(L, g).

Definition 2.8. Let G be a CAT(0) group, and let T be a torsion subgroup.
We say that T is a maximal torsion subgroup of G if ∀g ∈ G \ T , the group
Ext(T, g) is not a torsion group (i.e. it contains a translation).

Definition 2.9. Two geodesic rays γ, γ′ : [0,∞)→ X are said to be asymptotic
if there exists a constant K such that d(γ(t), γ′(t)) ≤ K for all t ≥ 0. This gives
an equivalence relation. The set of all equivalence classes forms the boundary
at infinity of X, denoted ∂∞X. If γ is in the equivalence class c, we say γ goes
to c or γ approaches c.

The action of an isometry on X has a natural extension to ∂∞X. Let
g ∈ Isom(X), where Isom(X) is the group of all isometries from the metric
space X to itself. Given two geodesic rays γ, γ′ : [0,∞) → X, if there exists
K such that d(γ(t), γ′(t)) ≤ K for all t ≥ 0, then d(g(γ(t)), g(γ′(t))) ≤ K for
all t ≥ 0. Therefore, g ◦ γ and g ◦ γ′ are in the same equivalence class, so g
preserves equivalence classes of geodesic rays and hence extends to a map on
the boundary.

Example 2.10. It is easy to see that both ∂∞E2 and ∂∞H2 is S1.

Definition 2.11. Let B(p, r) denote the ball centered at p of radius r. Let
γ : [0,∞) → X with γ(0) = x0 be a geodesic ray emanating from x0 in the
equivalence class c. We define the horoball at c determined by γ to be

Bc,γ =
⋃

t∈[0,∞)

B(γ(t), d(γ(t), x0))

Since γ(0) = x0 and γ a geodesic, d(γ(t), x0)) = t. The definition can then
be written more concisely as

Bc,γ =
⋃

t∈[0,∞)

B(γ(t), t)

The corresponding horosphere at c determined by γ denoted by Hc,γ is the
boundary of the horoball Bc,γ . With this notation, the geodesic ray γ is required
to be in the equivalence class c. When the context is clear or we are referring
to any horosphere at c, we will drop the second subscript.
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Definition 2.12. Equivalently, we can define the horosphere using the Buse-
mann function. Let γ be a geodesic ray defined as in the previous definition.
Given a point y ∈ X we define the Busemann function with respect to γ

bγ(y) = lim
t→∞

(d(γ(t), y)− t)

The horosphere is then the level set Hc,γ = b−1
γ (0), and similarly the horoball

is Bc,γ = b−1
γ ((−∞, 0]).

Definition 2.13. We extend the notion of boundary at infinity to horoballs
and horospheres as follows. If Bc is a horoball at c and Hc is the corresponding
horosphere, then we will denote the boundary at infinity of these sets by ∂∞Bc
and ∂∞Hc respectively.

∂∞Bc is defined to be the set of equivalence classes of all geodesic rays γ
which, if γ(0) ∈ Bc, then γ(t) ∈ Bc for all t ∈ [0,∞). ∂∞Hc is naturally the
boundary of ∂∞Bc as a subset of ∂∞X.

3 Results

The main theorems we use regarding properties of CAT(0) groups and their
torsion subgroups can be found in [BH]. These results will be stated without
proof. Throughout this section, G refers to a CAT(0) group acting on a CAT(0)
space X properly discontinuously and cocompactly, and T denotes a subgroup of
G consisting of only torsion elements. We will make the assumption throughout
that T fixes a point in the boundary at infinity, and we will call this point c.

Lemma 3.1. Every torsion element t fixes a point pt ∈ X

Proof. Let t ∈ G be a torsion element and define F =< t >. Let x ∈ X and let
Fx be the orbit of x under F . Since F is finite, this is a bounded set. Therefore,
C(Fx) is a compact, convex set, where C(Fx) denotes the convex hull of the set
Fx. Moreover, t(Fx) = Fx , so t(C(Fx)) = C(Fx). Applying the Schauder
Fixed Point Theorem, t fixes a point in C(Fx).

Remark 3.2. Since each torsion element t fixes a point pt ∈ X, it also fixes the
geodesic ray emanating from pt in the equivalence class c.

Lemma 3.3. CAT(0) groups have finitely many conjugacy classes of finite sub-
groups.

Lemma 3.3 implies directly that CAT(0) groups have finitely many conjugacy
classes of finite order elements. Therefore, given a torsion group T ⊆ G, the
equivalence relation t1 ∼ t2 if ∃g ∈ G such that t1 = gt2g

−1 divides T into
a finite number of equivalence classes. We will call these equivalence classes
conjugacy classes of T over G.

Lemma 3.4. Let Hc,γ be a horosphere at c. If g ∈ T , then g stabilizes Hc,γ .
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Proof. Let Hc,γ be the horosphere at c determined by the geodesic ray γ. Define
x ∈ Hc,γ by x = γ(0). Let g ∈ T , and let y ∈ X be a fixed point for g. Then g
fixes α, where α is the geodesic ray from y to c. Let a ∈ Hc,α.

bα(ga) = lim
t→∞

(d(α(t), ga)− t)

Since g−1 is an isometry,

d(α(t), ga) = (d(g−1(α(t)), a)

and
bα(ga) = lim

t→∞
(d(g−1(α(t)), a)− t)

But for all t, g−1(α(t)) = α(t), so bα(ga) = limt→∞(d(α(t), a)− t) = bα(a) = 0.
This is true for all a in H′c, so g(Hc,α) = Hc,α. The geodesic ray α intersects
all horospheres inside Hc,α, and this intersection is fixed by g, so the same
argument applies to all horospheres inside H′c. Therefore, if Hc ⊂ Bc,α, then
Hc,γ is stabilized by g.

Assume Hc,α lies outside Hc,α. Then γ intersects Hc,α; let z = γ(t0) be
the point at which they intersect. Note that d(x, z) = t0, so Hc,γ is the unique
horosphere a distance t0 outside of Hc,α.

Let b ∈ Hc. As before,

bγ(gb) = lim
t→∞

(d(γ(t), gb)− t) = lim
t→∞

(d(g−1(γ(t)), b)− t)

Since g−1 fixes c, g−1(γ) is also a geodesic ray going to c. Therefore, g maps
Hc to another horosphere at c. Additionally, we have

d(x, z) = t0 = d(g−1(x), g−1(z))

and g−1 stabilizes H′c, so g−1(z)) ∈ H′c. Combining this with the fact that
g−1(x) and g−1(z) lie on a geodesic ray going to c, we see that g−1(Hc) is either
the horosphere t0 inside H′c or the horosphere t0 outside H′c. But if g−1(Hc) is
inside H′c, then so is g(g−1(Hc)), which contradicts our assumption that Hc lies
outside H′c. g−1(Hc) must then be the horosphere t0 outside H′c, which is Hc.
Hence, g stabilizes the horosphere Hc.

Lemma 3.5. Given a horosphere Hc, if there exists a geodesic line γ such that
γ ⊆ Hc, then ∂∞Hc contains at least two points.

Proof. Define α, β : [0,∞) → X by α(t) = γ(t) and β(t) = γ(−t). Then α and
β are geodesic rays in Hc. Assume ∂∞Hc consists of only c. Then α and β
are geodesic rays from γ(0) to c, so by uniqueness of geodesics, α = β. But
if γ(−1) = γ(1), then the geodesic segment γ([−1, 1]) is a loop, which is a
contradiction. Therefore, ∂∞Hc contains at least two points.
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Lemma 3.6. Let x ∈ X be a translation, and let a, b ∈ ∂∞X be endpoints of
the axis of x. If there exists c ∈ ∂∞X such that xc = c and a 6= c 6= b, then the
axis of x is contained in a horosphere at c.

Proof. Let γ : [0,∞) → X denote the axis of h, and let r be the distance that
h translates points on the axis. Note that since γ is the axis of a translation, it
is also a geodesic line. Assume γ is not contained in any horosphere at c.

Let Hc be a horosphere at c such that Hc ∩ γ consists of exactly two points
at least r apart (we can do this because horospheres are convex; we just have
to choose one large enough). Call these two points u and v, with

d(u, v) = d(xu, v) + r

Then hv and h−1u are inside the horosphere Hc and hu and h−1v lie outside
Hc.

Let α : [0,∞) → X be the geodesic ray from u to c. Then Hc = b−1
α (0). h

fixes c, so h(α) and h−1(α) are geodesics going to c. Let x ∈ Hc. Then

bα(hx) = lim
t→∞

(d(α(t), hx)− t) = lim
t→∞

(d(h−1(α(t)), x)− t) = bh−1α(x)

This is the same for any x in Hc, so h maps Hc to another horosphere at c. Call
this horosphere H′c.

So we have that h(Hc) = H′c. But h(u) lies outside the horosphere Hc and
h(v) lies inside, so they can not lie on the same horosphere at c, so we have
reached a contradiction. Therefore, γ is contained in some horosphere at c.

Proposition 3.7. Let Hc be a horosphere at c, where c ∈ ∂∞X. If there exists
c′ ∈ ∂∞X and a horosphere Hc′ at c′ such that c ∈ ∂∞Hc′ , then c′ ∈ ∂∞Hc.

Lemma 3.8. Let C be an infinite conjugacy class of T (over G), and let m ∈ C.
Then C = {ximx−1

i }∞i=1, where xi ∈ G. Suppose each xi a translation. Let
ai ∈ ∂∞X be the point farthest from c which is fixed by ximx

−1
i and let ci be

the point at infinity towards which xi translates. If limi→∞ xic = limi→∞ ai = c
and limi→∞ ci = c, then limi→∞ | < ximx

−1
i m−1 > | = ∞. In particular, if x

is a translation towards c, then | < xmx−1m−1 > | =∞.

Proof. Sketch of proof.
We will begin with the particular case, when x is a translation towards c.

Let γ : (−∞,∞)→ X be the axis of x oriented such that γ(∞) = c, and r be the
distance that x maps points on the axis. Define α : [0,∞)→ X by α(t) = γ(t).
Then x maps the horosphere Hc,α to the horosphere Hc,β , where β(t) = γ(t+r).
Geometrically, x maps a horosphere at c to the unique horosphere a distance r
inside it.

Now examine xmx−1. Since x−1 maps horospheres at c outward by r, it
acts as a contraction on geodesics going to c centered at γ, so it can be thought
of as contracting the horosphere as it moves it outwards. The torsion element
m acts as a rotation or reflection about some fixed set in the horosphere, so the
contraction has very little effect on the action of m except that it can translate
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this fixed set, so m is rotating or reflecting about a different point or set. x
then maps this horosphere back to the original horosphere by a dilation about
γ. The element xmx−1 therefore acts in the same way as m, but centered at a
different point on the horosphere. We believe that this implies xmx−1m−1 is a
translation, and we get our intuition from the manifold case. A simple example
is rotations in the Euclidean plane: if a is a rotation by θ centered at p and b is
a rotation by θ centered at q, then ab−1 is a translation.

In the more more general part of our lemma, we have an infinite conjugacy
class C = {ximx−1

i }∞i=1. Let xi and ti have the properties assumed in the
lemma. Then the sequence limi→∞ ximx

−1
i m−1 is limiting to the above case,

so it is limiting to a translation. Therefore, the order must approach infinity. If
we were to compare this to Euclidean case mentioned previously, this sequence
is analogous to a sequence ab−1

i . As before, a is a rotation by θ centered at
p, and we define bi to be a rotation by θi centered at qi. If limi→∞ θi = θ
and if limi→∞ qi = q, then the element ab−1

i is a rotation by an angle φi, with
limi→∞ φi = 0. Thus, limi→∞ | < ab−1

i > | =∞.

Theorem 3.9 (Main Theorem). Let T be a maximal torsion subgroup of G,
and let c ∈ ∂∞X be fixed by T. If ∂∞Hc = {c}, then T has a finite number of
conjugacy classes.

Proof. We have that ∀t ∈ T , tc = c. Let W ⊆ T be the subset consisting of all
elements that fix at least one other point in the boundary (i.e. t ∈ W if t ∈ T
and ∃ct ∈ ∂∞X such that ct 6= c and tct = ct).

Assume W is a finite set. Recall that G has a finite number of conjugacy
classes of finite order elements, so T has a finite number of conjugacy classes
over G. Let C be one such conjugacy class, and let m ∈ C. Each t ∈ C can
then be written as xmx−1 for some x ∈ G. But t(xc) = xmx−1(xc) = xm(c).
Since m ∈ T , mc = c, and t(xc) = xc. Therefore, xc is a fixed point for t.
We assumed that W is finite, so this tells us that if Gc ⊂ G is the stabilizer
subgroup of G fixing c, then T has a finite number of conjugacy classes over Gc.
Let C1, C2, ...Cn be the conjugacy classes of T over Gc, and let mi ∈ Ci. Each
element t ∈ T can be written xmjx

−1, where t ∈ Cj and x ∈ Gc.
Case 1: ∀t ∈ T, ∃x ∈ Gc such that x is torsion and t = xmjx

−1 for some j.
All such x’s fix c, and T is maximal, so either every such x is an element of T ,
or ∃x such that the group extension of T by x is not a torsion group.

In the latter case, there must be some element z ∈ Ext(T, x) such that
| < z > | =∞. But T and x both stabilize horospheres at c, so z must as well.
Let a and b be the endpoints of the axis of z. Let Hc be a horosphere at c,
and let p ∈ Hc. Then ∀n ∈ Z, zn(p) ∈ Hc, so limn→∞ zn(p) = a ∈ ∂∞Hc and
limn→−∞ zn(p) = b ∈ ∂∞Hc. Since a 6= b, this violates ∂∞Hc = {c}.

Therefore, every such x is an element of T , so T has a finite number of
conjugacy classes.

Case 2: There exists t ∈ Cj such that t = xmjx
−1 and x a translation fixing

c. If c is an endpoint for the axis of x, then by Lemma 3.8 | < tm−1 > | = ∞,
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which violates T being a torsion group. If c is not an endpoint for the axis of
x, then by Lemma 3.6 the axis of x is contained in a horosphere at c. The axis
is a geodesic, so Lemma 3.5 tells us that ∂∞Hc contains at least two points, so
∂∞Hc 6= {c}.

Therefore, whenever W is finite, T has a finite number of conjugacy classes.
Assume now that W is infinite. Since T has a finite number of conjugacy

classes over G, at least one of these conjugacy classes must contain an infinite
subset of W . Let C be one such conjugacy class, and let m ∈ W ∩ C. Let
S ⊂ ∂∞X be the set of points at infinity fixed by m. Since m ∈ W , S consists
of at least two points.

Each element t ∈ C can be written as xmx−1 for some x in G. Let a ∈ S.

t(xa) = (xmx−1)(xa) = xm(a) = xa

Therefore, if t = xmx−1, then t fixes the set xS. We will now enumerate
elements of C as {ximx−1

i }∞i=1, and define ti = ximx
−1
i . Each ti fixes xiS; let

ci be the point in xiS farthest from c. Each ti fixes both c and ci, so applying
Lemma 3.4, ti stabilizes Hc ∩ Hci , where Hc and Hci are any two horospheres
at c and ci, respectively.

Pick a point p in X. Let γ be the geodesic ray from p to c, and let αi be the
geodesic ray from p to ci. The sequence {tip}∞i=1 is infinite, so by discreteness it
must approach infinity. For all integers i, p ∈ Hc,γ∩Hci,αi , so tip ∈ Hc,γ∩Hci,αi .
Therefore, in the limit as i goes to infinity, the intersection Hc,γ ∩ Hci,αi must
also approach infinity.

Now let us examine the sequence {ci}∞i=1. Since ∂∞X is sequentially com-
pact, there is a convergent subsequence {cij}∞j=1.

Case 1: There exists a convergent subsequence {cij}∞j=1 that converges to a
point a 6= c. Let β be the geodesic ray from p to a. The sequence of intersections
Hc,γ ∩Hcij

,αij
must then approach c, so c must be in the boundary at infinity

of limj→∞Hcij
,αij

which equals Ha,β . Therefore, c ∈ ∂∞Ha,β . By Proposition
3.7, a ∈ ∂∞Hc,γ . Since a 6= c, this contradicts our assumption that ∂∞Hc = {c}.

Case 2: Every subsequence {cij}∞j=1 converges to c. Then the sequence itself
must converge to c.

lim
i→∞

ci = c

Recall that ci is the farthest fixed point from c for a given ti. Therefore,
limi→∞ xiS = c. Since S contains at least two points, it has non-zero diameter.
Hence, the elements xi must be acting as contractions on ∂∞X near c, with
the fixed point of these contractions limiting to c. The only isometries that be-
have in this way on the boundary are translations towards points approaching
c. Therefore, we can apply Lemma 3.8 to derive our contradiction.

limi→∞| < tim
−1 > | =∞

This implies that either there exists an infinite order element, in which case
T is not torsion, or there is no bound on the order of elements in T , which
violates Lemma 3.3.

This completes the proof.
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4 Conclusion and Future Research

We have yet to prove the general theorem that torsion subgroups of CAT(0)
groups are finite. However, we have shown that in a particular case, the question
can be reduced to a major open question regarding torsion groups. Many believe
that infinite torsion groups with a finite number of conjugacy classes do not exist,
and if this turns out to be true, then our case would be proved.

The one problem with our proof is that we have been unable to rigorously
prove Lemma 3.9, which is essential for our proof. We will keep working on
this part of the paper, and if a proof continues to elude us then we will try
other approaches for the subcases requiring this lemma. Once this section is
complete, we have a few ideas which may be applied to proving the theorem in
general. In the case we proved, we assumed that Hc has only one point in its
boundary at infinity, and we often derived our contradiction by showing that
there was a geodesic in the horosphere Hc. Even without our assumption, this
information may be useful. A geodesic line in the horosphere Hc may imply
that the CAT(0) space X is equal to the product R× Y , where Y is a CAT(0)
space. If the CAT(0) group G acting on X has an infinite torsion subgroup, then
perhaps we can construct a CAT(0) group G′ which acts on Y geometrically
and contains an infinite torsion subgroup T ′. By induction, this would imply
that X is infinite dimensional, so it cannot be proper. These are the potential
directions in which we may take this research project in the coming months.
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