GENERAL INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistants, List of</td>
<td>3</td>
</tr>
<tr>
<td>Barrett, Edward, State Geologist, Paper by</td>
<td>7</td>
</tr>
<tr>
<td>Barrett, Wendell</td>
<td>156</td>
</tr>
<tr>
<td>Bigney, A. J.</td>
<td>211</td>
</tr>
<tr>
<td>Bushnell, T. M.</td>
<td>109, 156</td>
</tr>
<tr>
<td>Contents, Table of</td>
<td>4</td>
</tr>
<tr>
<td>Culbertson, Glean</td>
<td>223</td>
</tr>
<tr>
<td>Dearborn County, Geology of</td>
<td>211</td>
</tr>
<tr>
<td>Archaeology</td>
<td>221</td>
</tr>
<tr>
<td>Economic Geology</td>
<td>214</td>
</tr>
<tr>
<td>Geology</td>
<td>212</td>
</tr>
<tr>
<td>Glacial Drift</td>
<td>220</td>
</tr>
<tr>
<td>Historical Statement</td>
<td>211</td>
</tr>
<tr>
<td>Location and Size</td>
<td>211</td>
</tr>
<tr>
<td>Paleontology</td>
<td>215</td>
</tr>
<tr>
<td>Soils</td>
<td>218</td>
</tr>
<tr>
<td>Conservation of the Soil</td>
<td>219</td>
</tr>
<tr>
<td>Topography</td>
<td>211</td>
</tr>
<tr>
<td>Erni, C. P.</td>
<td>109</td>
</tr>
<tr>
<td>Fountain County Soil Report</td>
<td>200</td>
</tr>
<tr>
<td>Climate</td>
<td>209</td>
</tr>
<tr>
<td>Soil Discussion</td>
<td>201</td>
</tr>
<tr>
<td>Clyde Series</td>
<td>206</td>
</tr>
<tr>
<td>Clyde Silt Clay Loam</td>
<td>206</td>
</tr>
<tr>
<td>Fox Series</td>
<td>208</td>
</tr>
<tr>
<td>Genesee Series</td>
<td>208</td>
</tr>
<tr>
<td>Miami Series</td>
<td>207</td>
</tr>
<tr>
<td>Grant County, Soil Survey of</td>
<td>72</td>
</tr>
<tr>
<td>Agriculture</td>
<td>76</td>
</tr>
<tr>
<td>Climate</td>
<td>74</td>
</tr>
<tr>
<td>Description of the Area</td>
<td>72</td>
</tr>
<tr>
<td>Soils</td>
<td>85</td>
</tr>
<tr>
<td>Bellefontaine Loam</td>
<td>96</td>
</tr>
<tr>
<td>Clyde Silt Clay Loam</td>
<td>97</td>
</tr>
<tr>
<td>Crosby Silt Loam</td>
<td>93</td>
</tr>
<tr>
<td>Crosby Silt Clay Loam</td>
<td>95</td>
</tr>
<tr>
<td>Fox Loam</td>
<td>101</td>
</tr>
<tr>
<td>Genesee Loam</td>
<td>102</td>
</tr>
<tr>
<td>Genesee Silt Loam</td>
<td>104</td>
</tr>
<tr>
<td>Miami Silt Loam</td>
<td>88</td>
</tr>
<tr>
<td>Miami Silty Clay Loam</td>
<td>91</td>
</tr>
<tr>
<td>Muck and Peat</td>
<td>105</td>
</tr>
<tr>
<td>Summary</td>
<td>107</td>
</tr>
<tr>
<td>Subject</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Greene County, Geology of</td>
<td>240</td>
</tr>
<tr>
<td>Archaeology</td>
<td>259</td>
</tr>
<tr>
<td>Brick</td>
<td>265</td>
</tr>
<tr>
<td>Cave, The</td>
<td>245</td>
</tr>
<tr>
<td>Coal Measure Epoch</td>
<td>251</td>
</tr>
<tr>
<td>Drainage</td>
<td>255</td>
</tr>
<tr>
<td>Elevation</td>
<td>240</td>
</tr>
<tr>
<td>Fire Clay</td>
<td>258</td>
</tr>
<tr>
<td>Fossils</td>
<td>247</td>
</tr>
<tr>
<td>Geological Formations</td>
<td>242</td>
</tr>
<tr>
<td>Glacial Epoch</td>
<td>257</td>
</tr>
<tr>
<td>Iron Ore</td>
<td>265</td>
</tr>
<tr>
<td>Millstone Grit</td>
<td>248</td>
</tr>
<tr>
<td>Natural Wonders</td>
<td>262</td>
</tr>
<tr>
<td>Petroleum</td>
<td>254</td>
</tr>
<tr>
<td>Soil</td>
<td>263</td>
</tr>
<tr>
<td>Grimes, E. J</td>
<td>156</td>
</tr>
<tr>
<td>Hertenstein, Earl</td>
<td>72</td>
</tr>
<tr>
<td>History of Indiana During the Glacial Period</td>
<td>11</td>
</tr>
<tr>
<td>Chapter I</td>
<td>11</td>
</tr>
<tr>
<td>Preglacial Indians</td>
<td>11</td>
</tr>
<tr>
<td>General Lines of Drainage</td>
<td>12</td>
</tr>
<tr>
<td>General Surface</td>
<td>15</td>
</tr>
<tr>
<td>Chapter II</td>
<td>17</td>
</tr>
<tr>
<td>Cause of Pleistocene Glaciation</td>
<td>17</td>
</tr>
<tr>
<td>Cordilleran Field</td>
<td>20</td>
</tr>
<tr>
<td>Crollian Hypothesis</td>
<td>18</td>
</tr>
<tr>
<td>Depletion Theory</td>
<td>19</td>
</tr>
<tr>
<td>Elevation Hypothesis</td>
<td>17</td>
</tr>
<tr>
<td>European Succession</td>
<td>22</td>
</tr>
<tr>
<td>Keewatin Field</td>
<td>20</td>
</tr>
<tr>
<td>Labradorean Field</td>
<td>20</td>
</tr>
<tr>
<td>Localization of the Ice Fields</td>
<td>21</td>
</tr>
<tr>
<td>Succession in North America</td>
<td>21</td>
</tr>
<tr>
<td>Successive Ice Advances and Retreats</td>
<td>18</td>
</tr>
<tr>
<td>Wandering of the Poles</td>
<td>21</td>
</tr>
<tr>
<td>Coming of the Glacial Lobes</td>
<td>17</td>
</tr>
<tr>
<td>Erie Lobe</td>
<td>23</td>
</tr>
<tr>
<td>Illinoian Lobe</td>
<td>22</td>
</tr>
<tr>
<td>Indiana Lobe</td>
<td>22</td>
</tr>
<tr>
<td>Michigan Lobe</td>
<td>23</td>
</tr>
<tr>
<td>Saginaw Lobe</td>
<td>23</td>
</tr>
<tr>
<td>Chapter III</td>
<td>26</td>
</tr>
<tr>
<td>Glacial Deposits</td>
<td>26</td>
</tr>
<tr>
<td>Indiana Moraines, Some of</td>
<td>29</td>
</tr>
<tr>
<td>Illinoian</td>
<td>30</td>
</tr>
<tr>
<td>Mississinewa</td>
<td>31</td>
</tr>
<tr>
<td>Shelbyville</td>
<td>30</td>
</tr>
<tr>
<td>Union</td>
<td>31</td>
</tr>
<tr>
<td>Valparaiso</td>
<td>32</td>
</tr>
</tbody>
</table>
Chapter III—Continued.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wabash</td>
<td>31</td>
</tr>
<tr>
<td>Appearance</td>
<td>27</td>
</tr>
<tr>
<td>Bowlders</td>
<td>28</td>
</tr>
<tr>
<td>Composition</td>
<td>28</td>
</tr>
<tr>
<td>Contrast</td>
<td>32</td>
</tr>
<tr>
<td>Drumlins</td>
<td>29</td>
</tr>
<tr>
<td>Eskers</td>
<td>29</td>
</tr>
<tr>
<td>Method of Deposit</td>
<td>26</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td>28</td>
</tr>
<tr>
<td>Drift</td>
<td>32</td>
</tr>
<tr>
<td>Appearance</td>
<td>33</td>
</tr>
<tr>
<td>Bowlders and Pebbles</td>
<td>34</td>
</tr>
<tr>
<td>Composition</td>
<td>33</td>
</tr>
<tr>
<td>Inner Border Plains</td>
<td>35</td>
</tr>
<tr>
<td>Method of Deposition</td>
<td>32</td>
</tr>
<tr>
<td>Old Glacial Lake Bottoms</td>
<td>35</td>
</tr>
<tr>
<td>Outwash Plains</td>
<td>35</td>
</tr>
</tbody>
</table>

Chapter IV

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographic Work of the Ice Lobes and Their Deposits</td>
<td>36</td>
</tr>
<tr>
<td>Drainage Changes</td>
<td>41</td>
</tr>
<tr>
<td>Hills</td>
<td>38</td>
</tr>
<tr>
<td>Lakes</td>
<td>38</td>
</tr>
<tr>
<td>Present Day Lakes</td>
<td>39</td>
</tr>
<tr>
<td>River Valleys</td>
<td>40</td>
</tr>
<tr>
<td>Soil</td>
<td>36</td>
</tr>
</tbody>
</table>

Hurst, L. A. | 72 |

Introduction | 7 |

Jefferson County, Geology and Natural Resources of | 223 |

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beds of Easterly Flowing Streams</td>
<td>225</td>
</tr>
<tr>
<td>Clinton Limestone</td>
<td>226</td>
</tr>
<tr>
<td>Corniferous Limestone</td>
<td>227</td>
</tr>
<tr>
<td>Decayed Human Bones</td>
<td>238</td>
</tr>
<tr>
<td>Geological Economic Products</td>
<td>230</td>
</tr>
<tr>
<td>Geological Formations</td>
<td>229</td>
</tr>
<tr>
<td>Gold</td>
<td>237</td>
</tr>
<tr>
<td>Hardpan</td>
<td>234</td>
</tr>
<tr>
<td>Mantle Rock</td>
<td>228</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>235</td>
</tr>
<tr>
<td>New Albany Black Shale</td>
<td>227</td>
</tr>
<tr>
<td>Objects of Archaeological Interest</td>
<td>238</td>
</tr>
<tr>
<td>Outcropping Formations</td>
<td>225</td>
</tr>
<tr>
<td>Outcropping Ledges of the Clinton and the Bluff</td>
<td>226</td>
</tr>
<tr>
<td>Outcropping of the Waldron Shale</td>
<td>227</td>
</tr>
<tr>
<td>Pulverizing Limestone</td>
<td>235</td>
</tr>
<tr>
<td>Rate of Erosion in Valleys</td>
<td>226</td>
</tr>
<tr>
<td>Ravines</td>
<td>223</td>
</tr>
<tr>
<td>Scenes of Great Natural Beauty</td>
<td>237</td>
</tr>
<tr>
<td>Schneider Well</td>
<td>236</td>
</tr>
<tr>
<td>Soils, General Classes</td>
<td>230</td>
</tr>
<tr>
<td>Bottom</td>
<td>230</td>
</tr>
</tbody>
</table>
Soils, General Classes—Continued.

<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone Upland</td>
<td>231</td>
</tr>
<tr>
<td>Soils of the Flats</td>
<td>233</td>
</tr>
<tr>
<td>Soils of the Uplands</td>
<td>232</td>
</tr>
<tr>
<td>Volusia Silt Loam</td>
<td>232</td>
</tr>
<tr>
<td>Stone</td>
<td>234</td>
</tr>
<tr>
<td>Streams of the Wabash Side of the Divide</td>
<td>225</td>
</tr>
<tr>
<td>Surface of Main Divide</td>
<td>225</td>
</tr>
<tr>
<td>Tributaries of Indian Kentuck Creek</td>
<td>223</td>
</tr>
<tr>
<td>Wabash-Ohio Divide</td>
<td>223</td>
</tr>
<tr>
<td>Water Power Plants</td>
<td>236</td>
</tr>
</tbody>
</table>

Middleton, Philip................................| 72 |

Oil and Gas....................................| |
Bedford Oil and Gas Co.	
Central Refining Company and Indian Refining Company	272
Flow of Gas	272
Gilt Edge Company	271
Huron Group of Sandstones and Shales	269
Jamison Oil Pool	267
Lima-Indiana Field	268
Lynn Oil and Gas Co.	269
Oakland City Oil Field	267
Ohio Oil Co.	269
Old Gas Field	267
Pressure of Gas Wells	268
Sullivan County Oil Field	268
Total Number of Wells Abandoned	269
Total Production for the State	269
Towns Supplied with West Virginia Gas	267
Treat, E. M., Company	271

Orahood, C. H..................................| 200 |

Starke County, Soil Survey of..................| 156 |
Agriculture	161
Climate	159
Description of the Area	156

Soils...| |
Clyde Fine Sand	174
Clyde Fine Sandy Loam	176
Clyde Loam	179
Coloma Fine Sand	186
Griffin Fine Sandy Loam	188
Griffin Loam	189
Miami Fine Sandy Loam	187
Muck	190
Newton Fine Sand	180
Plainfield Fine Sand	181

Drainage.......................................| 194 |

Summary..| 196 |

Tharpe, W. E...................................| 44, 72|

Van Gorder, W. B................................| 240 |
GENERAL INDEX.

Watkins, W. I. ... 72
Wells County, Soil Survey of .. 44
 Agriculture ... 48
 Description of the Area ... 44
Soils ... 53
 Bellefontaine Loam .. 65
 Clyde Silty Clay Loam .. 62
 Crosby Silt Clay Loam .. 59
 Fox Loam .. 66
 Genesee Silt Loam ... 67
 Meadow ... 70
 Miami Silty Clay Loam .. 57
 Muck .. 68
Summary .. 70
Wiley, W. E ... 44
White County, Soil Survey of 109
 Agriculture ... 116
 Climate .. 114
Soils ... 123
 Bellefontaine Loam .. 133
 Bellefontaine Silt Loam .. 133
 Carrington Fine Sandy Loam 140
 Carrington Loam ... 137
 Carrington Loam—Flat Phase 139
 Carrington Silt Loam .. 134
 Carrington Silt Loam—Flat Phase 136
 Clyde Fine Sandy Loam ... 144
 Clyde Loam ... 143
 Clyde Loamy Fine Sand ... 146
 Clyde Silty Clay Loam .. 141
 Clyde Silty Clay Loam—Heavy Phase 142
 Dunkirk Fine Sand ... 147
 Dunkirk Fine Sand—Rolling Phase 149
 Fox Fine Sandy Loam .. 151
 Genesee Fine Sandy Loam ... 150
 Miami Fine Sandy Loam .. 131
 Miami Loam ... 130
 Miami Silt Loam .. 127
 Muck .. 152
Summary .. 154
Wood, Harry Warren ... 11
Wright, Floyd E ... 267