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Most of the equipment construction and testing and proportional chambers (MWPC Is), a small pair of x-y 

preparatory work for the CSB e~~erirnentl,~ has been MWPC1s, and a wedge-shaped plastic scintillator are 

completed during 1983. The extensive progress mounted in front of the liquid scintillator detector on 

includes: (1) fabrication and testing of all each arm. Each array spans a laboratory angle range of 

detectors, plus final assembly and alignment of the +18" horizontally and +14" vertically as seen from the 

rotatable arms and mounting hardware for the left-right target position. The plastic scintillator and small 

symmetric detector arrays; (2) completion and MWPC's are mounted on rails which permit the detectors 

successful operation of the laser-optical fiber to be moved backward on the arm from their normal 

diagnostic system for the -200 phototubes used; (3) location when the polarized-target dewar assembly has 

completion of cabling to, and installation of the "C" to be removed from the beam for maintenance. For a run 

Harris computer in, the electronics hut located just in December, 1983, the complete mounting and alignment 

outside the QDDM cave; (4) complete setup and debugging hardware was assembled and all detectors were aligned 

of the CSB electronics, front-end microprocessor both optically and in-beam in their final CSB 

hardware and acquisition software; (5) initial study of locations. The in-beam alignment procedures, described 

possible sources of systematic error with the complete previously,2 include measurement of the zero-crossing 

CSB apparatus, except for the polarized proton target; angle for the p-p scattering analyzing power 

(6) significant progress on the development of the (Blab=43.64") and of a kinematic crossing for free p-d 

polarized target; (7) completion of the polarized scattering (Bplab=8dlab=51. 12 "). The two measurements 

neutron facility (PNF) and detailed measurement of beam were performed simultaneously with the secondary 

properties; (8) major improvements to and calibration polarized proton beam (obtained by turning off the PNF 
-+ 

of the n-beam monitor/polarimeter. Details concerning sweeping magnet) incident on a mixed CH2-CD2 target. 

the firsc six areas above are summarized in the present These methods, when combined with precise measurement 
+ 

section, while the status of the PNF and n-beam monitor of the opening angle for free p-p scattering, 

are described in the technical section of this ~ e ~ o r t . ~  ray-tracing reproduction of the measured target 

Figure 1 shows a view from above of the two location, and relative alignment of the liquid 

multi-celled liquid scintillator neutron detectors scintillators with respect to the MWPC's via proton 

mounted on the rotatable arms in the PNF area, during ray-tracing, permit an absolute calibration of all 

an early stage in the assembly of the detector arrays. detector angles to -0.1. 

In the final arrays, a large pair of x-y multi-wire Diagnostic signals are provided to each of the 

5 3 



gure  - 
lti- 
t e c t  
n s id  
p o r t  

1. The PNF-CSB experiment s e t u p  shown a t  an  e a r l y  s t a g e  du r ing  assembly of t h e  d e t e c t o r  arms. Th - 
c e l l e d  l i q u i d  s c i n t i l l a t o r  d e t e c t o r s  a r e  mounted he re  on t h e  r o t a t a b l e  arms, but  t he  remainder of t 
o r  a r r a y s  was not  y e t  mounted. I n  t h e  background, one can s ee  t h e  *-beam po la r ime te r  (which has si 
e r a b l y  improved by t h e  a d d i t i o n  of more s c i n t i l l a t o r s ,  a s  de sc r ibed  i n  t h e  t e c h n i c a l  s e c t i o n  of t h i  
1 
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-200 phototubes in the detector arrays from a 

laser-fiber optics system, for purposes of time 

calibration, dead-time measurement, and gain stability 

checks. Light from a high-power fast-pulse nitrogen 

laser,4 triggered externally at a beam-related average 

rate -1 Hz, is optically expanded to a larger diameter 

beam, shifted into the wavelength region of optimal 

phototube response, and then routed through optical 

fibers to the wedge-shaped scintillator in either the 

left or the right detector array and to four selected 

liquid scintillator subcells in each detector array. 

The fibers are arranged in a rectangular matrix of 

which only one column at a time is illuminated through 

a slit in an opaque rotatable band. The slit position 

is stepped from one column to the next with each laser 

fire, allowing the eight illuminated subcells to be 

moved around the entire detectors in a 24-pulse cycle. 

The pulse heights of the diagnostic signals vary over a 

range of a factor -2 among the different phototubes, 

depending largely on the quality of the cuts at the 

fiber ends, but our experience with stability of the 

pulse heights over long time durations is very 

encouraging. 

In the December run, signals from all of the 

detectors were processed with the complete CSB data 

acquisition system. The electronics define events for 

computer processing as coincidences between at least 

one liquid scintillator cell on one arm and the 

wedge-shaped scintillator plus at least three out of 

the four MWPC1s on the other arm. Hardware resolving 

times are set wide enough to permit analysis of 

accidental coincidences in which, for example, the 

liquid scintillator fires on the succeeding beam burst 

and TDC channels corresponding only to those liquid 

scintillator cells which have actually fired for a 

given event (as determined by coincidence latches). 

The double-buffered front end then passes to the Harris 

computer, through a direct channel, filled buffers 

comprising efficiently packed information for all MWPC 

wires and liquid scintillator cells which have fired, 

without introducing any further hardware cuts which 

might conceivably cause a spin-dependent bias in the 

events stored on magnetic tape. Data from the channel, 
+ 

including events from the n-beam monitor/polarimeter 

interspersed with CSB events, are dumped directly onto 

event tape. On-line unpacking of the event 

information, reconstruction into subgroups of variable 

word length corresponding to each detector where a 

variable nwnber of hits is possible, calculation of 

derived variables (e .g. , angles of the detected 

particles), and sorting into histograms are then 

performed on a sampling basis, as time permits. The 

above functions are performed by an extensively 

modified version of the code RAQUEL, utilizing a 

completely rewritten external sorting program. 

In the December run, with on-line sorting of 1/4 

of the incoming events, we simultaneously processed 
+ 

3501s CSB events (induced by n on a plastic 

scintillator target) with a total dead time of 17% and 

100/s polarimeter events with a dead time of 3%. This 

performance meets our design goals for count rate 

capability. Of the CSB events, -150/s did not 

originate at the target, and may be at least partially 

eliminated in future runs by use of higher hardware 

thresholds on the wedge-shaped scintillators. Of the 

target-related events -10% arise from free n-p 

from the plastic (where the beam burst separation is 57 scattering. The free scattering events can be 

ns). The front end of the acquisition system, based on distinguished by a number of parameters, notably the 

two LSI 11/23 microprocessors, selectively reads ADC opening angles and time-of-flight vs. angle correlation 
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for the detected nucleons. In Fig. 2 we show n-p 

opening-angle spectra acquired with a partial detector 

setup during a run in early 1983, encompassing events 

in which neutrons are detected on the left arm and 

lo4 b) n; p, . n TOF 4 

c 1 n, .p, en TOF . ( f r e e )  

lo4 d l  all free n -p  cuts 

Figure 2. Measured opening-angle spectra for n-p 
pairs, charting the inexorable emergence of the 
free-scattering "finger" from the quasi-free 
background as cuts are added to other parameters to 
restrict attention to the free-scattering kinematic 
regime. The opening-angle resolution is 
AB(FWHM) = 2.8'. These spectra were obtained with a 
partial setup of the CSB detector arrays; the 
peaklbackground ratio can be improved further with 
the full setup. 

protons on the right. The four (z,np) spectra 

displayed chart the inexorable emergence of the 

free-scattering "finger" from the quasi-free background 

as cuts are added to other parameters to restrict 

attention to the free-scattering kinematic regime. The 

observed opening-angle resolution (A@m1 2 2.8") is 

sufficient to yield a peak/background ratio 2 100 in 

spectrum (d). Additional cuts available with the full 

detector arrays (e.g., on the time and energy signals 

for protons which penetrate into the liquid 

scintillator) can improve the peak/background ratio by 

an additional factor of two or more, adequate for 

subtraction of quasi-free background to an accuracy of 

better than 0.1% in the CSB experiment. It is easy to 
+ 

obtain a (p,pn) spectrum for the same target, with all 

the cuts relevant to free np scattering, via use of the 
+ 

secondary p beam in the PNF. Such a spectrum provides 

one method for measuring the shape of the relevant 

quasi-free background in the absence of a 

free-scattering peak. 

We are also now able to examine on-line difference 

spectra obtained for the free-scattering events with 

the secondary beam spin up minus spin down, as a 

function of the measured angle of the detected proton. 
+ 

The zero-crossing of the n-p analyzing power (near 

elab=43O) is clearly defined by the raw data in such 

different spectra. In the CSB experiment we will be 

searching effectively1 for a small shift in this 

zero-crossing angle when the scattering is initiated 

instead by an unpolarized neutron beam on a polarized 

proton target. 

The only major component of the CSB apparatus not 

yet completed is the "spin refrigerator" polarized 

target5 being developed at the University of Wisconsin. 

Proton polarizations in excess of 50% have been 

achieved with the Wisconsin target recently as a result 



of improvements in polarizing field strength, target 

rotation speed, Yb-ion doping concentration in the 

yttrium ethyl sulfate target material, and the use of 

single crystal rather than polycrystalline samples. 

Large-area single crystals for use in the CSB 

experiment are currently being grown. Typical spin 

relaxation (lie) times have been measured to be -50 hr 

in a 0.1 T holding field. Repolarization of the sample 

is accomplished by spinning it in a field of -1 T for 

20-30 minutes. The proton spin direction has been 

successfully reversed, with very little depolarization, 

by two different methods, with and without accompanying 

reversal of the holding field orientation. The latter 

method uses an NMR technique, involving absorption of 

substantial rf power during a fast ramping of the 

holding field magnitude through the resonant value. In 

the experiment we will use a combination of the two 

methods to aid in cancelling possible systematic errors 

associated with the passage of detected protons through 

the region of the holding field. We envision flipping 

the target spin several times per hour. 

We now expect delivery of the polarized target to 

Bloomington in the spring of 1984, after testing of its 

performance with the large-area single crystal samples. 
+ + + + 

Systematic error studies in n-p and p-p scattering will 

then be initiated, to be followed by our first CSB 

production runs next summer. In the period before the 

polarized target is available, we plan to implement 

diagnostic features in the acquisition software (to 

check automatically for detector or electronics 

malfunctions), finish work on certain peripheral 

features of the detection apparatus (e.g., a liquid 

scintillator circulation system), catch up on the 

replay of data already taken, continue work on Monte- 

Carlo codes to simulate various aspects of the 

experiment, and carry out in-beam investigations of 

certain potential sources of systematic error for which 

the polarized target is not necessary. Work in the 

latter direction was already begun in the December, 

1983 run, with initial measurements concerning the 
+ 

in-plane polarization components in the n beam and 

possible sensitivities of the experiment to the 

orientation (variable with sweeping magnet current) of 

these components. In a future run we will study the 

sensitivity to shifts in beam position and 

displacements of the secondary target from its nominal 

position. 
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