THE 7 Li(p, π^{-}) 8 B REACTION ## Z.-J. Cao, R.D. Bent, H. Nann and T.E. Ward Indiana University Cyclotron Facility, Bloomington, Indiana 47405 Since full shell model calculations are tractable in the p-shell and codes are available, it is hoped that the $^7\text{Li}(p,\pi^-)^8\text{B}$ reaction will provide an early and useful test of the two-nucleon model code for pion production being developed in this laboratory. Lithium 7 is the lightest target for which the (p,π^-) reaction leads to bound final states. Earlier measurements² of this reaction were made with unpolarized beam. Because analyzing powers are a sensitive test of details of the reaction mechanism, these measurements were repeated during 1984 with polarized beam. Fig. 1 shows spin up and spin down spectra obtained at T_p = 199.6 MeV and $\Theta_\pi(LAB)$ = 30°. Fig. 2 shows the angular distributions of the differential cross sections and analyzing powers for the transitions leading to the ground state and to the 0.78 and 2.32 MeV excited states of 8B . These results will be Figure 1. Spin up and spin down pion spectra from the reaction $^7\text{Li}(p,\pi^-)^8\text{B}$ at T_p = 199.6 MeV and $\Theta_\pi\text{LAB}$ = 30°. compared with predictions of the two-nucleon model. 1 - 1) J.S. Conte et al., this report, p. 68. - J.J. Kehayias et al., IUCF Scientific and Technical Report 1982, p. 87. Figure 2. Angular distributions of the cross sections and analyzing powers for the reaction $^7\text{Li}(p,\pi^-)^8\text{B}$ leading to the ground state and the 0.78 and 2.32 MeV excited states of ^8B .