AN APPROACH TO THE INDEXING OF BALLAD TUNES

George List

Comparative studies of British-American ballad tunes have in most cases been based on transcriptions of a single stanza of each ballad analyzed. Folk singers rarely sing any two stanzas of a ballad in exactly the same manner. Nor is a second rendition of a ballad likely to be an exact reproduction of the first rendition. Thus it cannot be expected that the application of this method will produce accurate data.

When one stanza only of a ballad is utilized in comparative studies, the first stanza is usually the one selected. This is unfortunate since it is the first stanza, in particular, which exhibits the greatest instability. It is in this stanza that the singer most commonly finds himself in error, for at this point he must set his tonality and adjust his vocal processes to the dictates of his ear. Not infrequently the singer finds that he has begun by singing a pitch pattern divergent from the one intended. An example of this phenomenon is offered in the following partial transcription. The initial pitch pattern sung by the informant in the first stanza differs from that sung initially in the subsequent nine stanzas of the ballad tune.

Figure 1. Variation in initial pitch pattern
The method of classification suggested here is therefore based on a comparison of all tune variants found in all stanzas sung. To illustrate this method transcriptions have been made of all stanzas.
of two ballads exhibiting similar tunes. In the recordings the singer of Ballad A sings eighteen stanzas; the singer of Ballad B sings ten stanzas. Transcriptions of the first two stanzas and the last two stanzas of each ballad are given in Figures 2 and 3. Space does not permit the reproduction of the transcriptions of all stanzas of the two ballads. For purpose of comparison the tunes have been transposed so that both end on the same pitch. To conserve space two stanzas are presented on one stave in different octaves.

A common tune, reconstruct, or archetype—whichever is preferred—has been extracted from the eighteen stanzas found in Ballad A. A similar archetype has been developed from the ten stanzas
found in Ballad B. The process by which this was accomplished is described below.

1. All reiterated pitches within a metrical unit were first reduced to one sustained pitch which then occupies the total space formerly occupied by the several reiterated pitches.

![Original Reduction](image1)

Figure 4. Reduction of reiterated pitches

2. There were then selected for use in the reconstruct all pitch patterns which were common to each stanza of the particular ballad—that is, those which, discounting reiterated pitches, occurred without change in each stanza of the ballad.

3. The remaining patterns were then checked stanza by stanza to determine which patterns or sections of patterns occurred in a similar form in at least three fourths of the stanzas.

4. The patterns or parts of patterns selected by processes 2 and 3 above were then combined. This method, as applied to a single metrical pattern, is illustrated in Figure 5.

![Stanza 1 St. 2 St. 3 Others](image2)

Figure 5. Development of archetypal metrical pattern

The resultant reconstructs or archetypes of ballad tunes A and B are given in Figure 6. Non-cadential rests in the tune of Ballad B represent elisions of all pitches at this point since they were not similar in at least three fourths of the stanzas.
No transcription made by ear can be completely accurate. On the other hand, the amount of detail that can be registered is almost infinite. This is illustrated in the transcriptions made by Béla Bartók in which he employs various diacritic marks not common to Western European art music as a means of indicating subtle variations in pitch and rhythm. However, the degree of detail reproduced should be adjusted to the needs of the study at hand. In the case of the analysis presented here, highly detailed transcriptions do not seem useful.
To check the accuracy of this assumption a more detailed transcription was made of all eighteen stanzas of Ballad A, playing the recording at half the speed at which it was recorded. The resultant archetype or reconstruct differed in no way from that derived from the first and less detailed transcription made. This fact is documented in Figure 7, which offers a detailed transcription of the sixth measure of each of the eighteen stanzas of Ballad A.

\[\text{Figure 7. Detailed transcription, measure 6, Ballad A}\]

Due to the infrequency of their occurrence, the slight contractions and expansions of metrical patterns recorded in others measures of the second transcription also produced no modifications in the archetype.

\[\begin{align*}
\text{St. 8, m. 1} & \quad \text{St. 10, m. 2} \\
\text{Figure 8. Detailed transcription. Contraction and expansion of measures.}\end{align*}\]
The two archetypes or reconstructs shown in Figure 6 were then combined by a similar process. However, in this case only pitches common to both reconstructs were selected. For convenience the non-cadential rests found in the reconstruct of Ballad B were ignored and each non-cadential pitch sustained until the succeeding pitch. The resultant archetype is given in Figure 9.

The method of notation used in Figure 9 is analogous to the mensural notation of European art music in the late medieval period. Any metrical unit may be divided into either two or three equal parts as indicated in the signature. Where two pitches are found in the metrical unit, two divisions are possible. When the archetype represents Ballad A, in which the metrical unit is divided into three parts like a dactylic foot in poetic meter, the first pitch occupies two thirds of the metrical unit and the second pitch the last third of the unit. When the archetype represents Ballad B, the metrical unit is divided into two parts like a trochaic poetic foot, and each part is of equal length. When only one pitch is found in the metrical unit, it of course occupies the entire unit; it is held for the full time value of the metrical unit in question.

The master archetype or reconstruct should now be compared with several stanzas selected at random from both Ballad A and Ballad B. This is best accomplished by playing the archetype and the original.
stanzaic tune simultaneously in octaves. It will then be heard that the archetype still exhibits a recognizable melodic kinship to the tunes from which it has been derived.

The master archetype may be reduced still further by utilizing only the pitches found at the beginning of each metrical unit, the pitches occurring on the principal stresses or beats. This skeletonization of ballad tunes is one method applied by Bronson in his studies of melodic kinship of ballad tunes. An archetype derived by this method is shown in Figure 10.

Figure 10. Skeletonization of master archetype

This procedure does not seem advantageous. When the skeletonized archetype is compared aurally with a stanza of either ballad, as was done previously in the case of the master archetype, it will be heard that the skeletonized form has lost a good deal of the melodic individuality of the original stanzaic tunes. Kinship is now vague and difficult to establish aurally. The master archetype still exhibits the anhemitonic pentatonic scale of the original stanzaic tunes. In the skeletal form the scale is tritonic and gives the false impression that the stanzaic tunes are based on the major triad. It therefore seems best to retain all material which is common to all or to three fourths of the stanzas analyzed.

In the further development of the indexing system, it is suggested that a number of groups, each consisting of ten or twelve similar melodies, be subjected to the process outlined. The master archetypes
thus developed will form points in a continuum of variation and will serve the same function as the items in a type index of traditional narratives. However, this type index will probably prove insufficient. It may be found, for example, that the first phrases of two master archetypes are similar, but the second phrases are dissimilar. Melodic patterns of less than a phrase in length may float from tune to tune. There also may be commonplace cadential patterns. Thus, the completion of the indexing system will probably require the development of a companion index of smaller groups, a classification level comparable to that of a motif index of traditional narrative texts. No decision can be made at this time concerning the exact form such a complementary index might take, for a large body of tunes must first be transcribed and compared.

As the contemplated archetypal and motival systems grow through the continued process of transcription, comparison, and reduction, it should become possible to categorize the contents of most ballad tunes. As desired, the archetypes can be classified by mode, gamut, and meter; by the number of phrases in each; and, if this seems useful, by cadential pitches of the phrases. Pitch sequence, rhythm, and meter would seem the more important elements to be considered in the development of the motival index.

When a large body of these analyses of individual tunes are available, they may be entered upon punch cards. The scholar is then in a position to make large scale comparisons by sorting the cards according to any pre-determined category in the dual classification system. This is, incidentally, the course Bronson followed in his analyses of the tunes of the Child ballads. However, the methods of analysis and indexing suggested here differ in many details from those followed by Bronson in his investigations. Bronson depends heavily upon published transcriptions of single stanzas. The system envisioned here would be based primarily upon recordings which contain all stanzas known to the informant.

In closing it should be indicated that the system as presently organized is only applicable to melodies which are reasonably metrical in character. A method of expanding the system to encompass the comparison and reduction of tunes which are basically non-metrical in character awaits further development.

NOTES

1. See, for example: Béla Bartók and Albert B. Lord, Serbo-Croatian Folk Songs (New York, 1951).

3. Ibid.

TRANSCRIPTIONS

Figure 1. "The Outlandish Knight," sung by Lily Joy, Magnolia, New Jersey, August 7, 1937. Recorded by Herbert Halpert. Indiana University AFPM ATL Nos. 435.4 and 5.

Figure 2. "Lord Thomas and Fair Eleanor," sung by Mrs. Esther Bryant Frazier, Evansville, Indiana, April 8, 1938. Recorded by Alan and Elizabeth Lomax for the Library of Congress. LC AAFS Nos. 1737A and B. IU AFPM ATL Nos. 435.4 and 5.

Figure 3. "Six King's Daughters," sung by Mrs. T. M. Bryant, Evansville, Indiana, April 8, 1938. Recorded by Alan and Elizabeth Lomax for the Library of Congress. LC AAFS No. 1735A. IU AFPM ATL No. 424.12.

KEY

- Breath of indeterminate length
- Silence of indeterminate length
- Pitch approximately a quarter step sharp
- Slightly longer in duration
- Slightly shorter in duration