StarDock: Shipping Customized Computing Environments to
the Data

Michael D. Young?, Soichi Hayashi?®, and Arvind Gopu®
®Indiana University, 3709 E. 10th St, Bloomington IN, USA;

ABSTRACT

Surging data volumes make it increasingly unfeasible to transfer astronomical datasets to the local systems of
individual scientists. Centralized pipelines offer some relief, but lack flexibility to fulfill the needs of all users. We
have developed a system that leverages the Docker container application virtualization software. Along with a
suite of commonly used astronomy applications, users can configure a container with their own custom software
and analysis tools. Our StarDock system will move the users container to the data, and expose the requested
dataset, allowing our users to safely and securely process their data without needlessly transferring hundreds of
gigabytes.

Keywords: Docker, container, ODI-PPA, scalable compute archive

1. INTRODUCTION

There is a growing need in astronomy to allow observers and archival users alike to run their preferred software
“close to the data”. The combination of large-format CCD imagers and rapid readout times produces data
volumes too large for the typical user to transport, store, reduce, and analyze the astronomical data obtained.
In recent years there have been attempts to address this issue by developing one-size-fits-all pipelines to filter
the data stream down into a manageable set of data products'.? While this approach has some merit, these
pipelines tend to have limited flexibility and cannot possibly satisfy the various research requirements of all the

potential consumers of a telescope’s observational data.

As a compromise we have developed StarDock, a system that allows users to construct customized computing
environments that can run on shared hardware, without polluting said shared hardware with niche software, or
suffering delays waiting for system admins to deliver specific components. This is accomplished through the
use of Docker containers to create a predictable, stable, and customizable computing environment for the users.
With StarDock, users can create a space where they can use their preferred software and methods to analyze
large volumes of data without the overhead of local storage or time-consuming and unnecessary data transfers.

In this work we will describe the design and structure of StarDock, trace a typical StarDock workflow, and
address the security concerns raised by allowing outside users to execute arbitrary code. It is our hope that
StarDock can serve as a model to show that the centralization of computing and storage resources does not
necessarily require that users abandon their preferred methods of astronomical data processing and analysis.

2. STARDOCK COMPONENTS

StarDock makes use of the SCA Workflow (in preparation), which defines a set of resources, services, and tasks
and dictates the flow of information between different services based on the requirements of a given workflow.
For StarDock, the workflow consists of a Data Service which stages the astronomical data, a Build service which
constructs the customized computing environment in Docker, and a Run service, which initiates the Docker
container and makes the requested data accessible to the user. Each of these services are discussed in more detail
in the following sections, and the workflow is illustrated in Figure 1.

Further author information: (Send correspondence to M.D.Y)
M.D.Y: E-mail: youngmd@iu.edu, Telephone: 1 812 606 8940
S.H: E-mail: hayashis@iu.edu
A.G: E-mail: agopu@iu.edu

Software and Cyberinfrastructure for Astronomy lll, edited by Gianluca Chiozzi,
Juan C. Guzman, Proc. of SPIE Vol. 9913, 991318 - © 2016 SPIE
CCC code: 0277-786X/16/$18 - doi: 10.1117/12.2233081

Proc. of SPIE Vol. 9913 991318-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



SCA Data
Service

SCA Workflow

-
StarDock
Docker
Repository

StarDock Build
Service

!

Centralized
Storage

StarDock Run
Service

S
i3]
CR

Figure 1. StarDock Workflow. The user initiates the workflow, which transfers data from tape using the SCA Data
Service, constructs the Docker image using the StarDock Build Service, and executes the container using the StarDock
Run Service.

2.1 SCA Data Service

The SCA Data Service was created separately from StarDock, and is an example of the sort of the reusable
microservice that the SCA Workflow was created for. Briefly, the SCA Data Service receives a list of files and
confirms the requesting user is allowed access to the requested data, which are then staged from the secure
tape archive at IU and are moved to the Data Capacitor, a shared Lustre-based file system accessible from the
compute resources at IU. A more complete description of the Data Service has been previously published as
a portion of the ODI Pipeline Portal and Archive.? After staging the requested files to disk the Data Service
returns as its output the network-accessible path to the staged data.

2.2 Build Service

The Build Service receives a set of configuration options from the SCA Workflow. Based on these options, it
constructs a customized DockerFile. The DockerFile begins with a base operating system image, typically some
version of the Ubuntu Linux distribution. This is then supplemented by Docker commands which specify the
installation and configuration of an SSH server, as well as defining a default account which will be the user’s
point of entry into the system.

The Build Service then iterates through the user’s chosen suite of astronomical applications, adding in turn
each of the required steps to install and configure the software within the Docker image. The current set
of pre-configured applications includes such standard astronomical software as IRAF, DS9, astropy, Montage,
SExtractor and SWarp. It also includes the QuickReduce pipeline, a set of python routines customized to reduce
and calibrate ODI-PPA observations.

The Build Service then appends any custom Docker commands the user may have entered. These commands
allow the user to specify the installation of software specific to their needs. There is some potential for abuse or
mis-configuration here, and our efforts to mitigate those risks are detailed in Section ?7. An example DockerFile
constructed by the Build Service is shown in Appendix A.

After constructing the DockerFile, the Build Service calls the Docker engine to constuct an image based on
that DockerFile. After a successful build, the new custom image is transferred to a private StarDock repository
of Docker images. The unique ID assigned to the custom image is returned to the SCA workflow as the product
of the Build Service.

Proc. of SPIE Vol. 9913 991318-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



2.3 Run Service

The Run Service is responsible for instantiating the Docker image as a container. It has both the Data Service
and Build Service as dependencies, and so receives the output from both. In the case of the Data Service, the
information required is the path to the staged input dataset. From the Build Service the Run Service obtains
the ID of the Docker image constructed.

With the above dependencies handled, the Run Service constructs the Docker run command, which launches
the container using the specifed image. The Docker run command also specifies the directories to be mounted
as volumes accessible from within the container. The staging input directory specified by the Data Service is
mounted as a read-only volume in the user’s home directory, and a read/write temporary directory is specified
to store the user’s output. The final portion of the run command is the execution of the SSH daemon, which
waits for the user to connect and initiate a shell. The run command also specifies that the Docker engine should
forward an unknown port on the host to any exposed ports in the container (22 in our case for SSH access).

After entering a running state, the Run Service responds to status inquiries from the SCA Workflow. These
status inquires are answered with the host name, the port that can be used for SSH access, and the status of the
container.

Upon the completion of the workflow—either user-indicated or based on scheduling concerns—the Run Service
receives a stop command, which results in the stoppage of the container. After confirming that the container
is stopped, the output directory is compressed and stored for usage in further workflows, as well as being made
available for direct download by the user.

2.4 User Interface

The user interface of StarDock is constructed within the framework of the SCA Workflow. The form for initiating
a StarDock container (Figure 2) begins with the user specifying which set of data the container is meant to access.
The collections of data are defined through other services, such as the ODI-PPA archive search interface.

After selecting the input dataset, the user has the opportunity to choose from a number of pre-configured
software options by simply checking a box. After that there is a field for the user to enter custom Docker
commands to install their own software. Finally the user must enter (and confirm) a password to restrict access
to their StarDock container.

After submission, the user is presented with the Workflow status page (Figure 3) where the can monitor the
process of the different StarDock service components. Each portion of the workflow can be stopped, paused,
or restarted as necessary. The parameters and paths of each service component are accessible for debugging
purposes.

After the Run Service enters a “Running” state, new interface components are revealed. A WebSH terminal
window provides immediate access to the container (Figure 4, and the user is given an SSH command they
can execute to login via the terminal on their system. An output tab displays the contents of the mounted
read /write output directory, and users can use this listing to directly download any products produced within
their container.

3. SECURITY CONCERNS

Whenever outside users are allowed access to an organization’s resources, security concerns must be addressed.
In the case of StarDock (and Docker containers in general) the layers of abstraction between the user and the
hardware can be made to act as bulwarks against destructive or malicious actors. By restricting user access to
the Docker container through SSH to a single non-root account, the user is blocked from accessing any critical
components within the container itself. If the user were able to elevate their privileges, they would still be
restricted to the container, which has only a single read-only mounted volume and a temporary read/write
mounted volume, so there is no danger of a user obtaining unauthorized access to proprietary scientific data.
Outgoing traffic from the container and the physical host are both monitored for potential misuse.

Proc. of SPIE Vol. 9913 991318-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



StarDock ===

Dataset
Messier 51 (27 files, 7.3GB)
Select your applications

IRAF
DS9
| astropy

Topcat

Customize your container

Enter Docker RUN Commands

QuickReduce Pipeline

SExtractor

SWarp

| Montage

PYRAF

GAIA

DL

" R/RStudio

RUN apt-get install -y vim wget

RUN /configure
RUN make

RUN wget http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio3390.tar.gz

Password

Password (Confirm)

Figure 2. The StarDock Workflow User Interface. Users select the dataset to process, choose applications, insert custom

Docker commands, and set passwords for access to the container.

Proc. of SPIE Vol. 9913 991318-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx

<«



Build Status

° FINISHED soichih/sca-service Npss C'Rerun Debug~
Service completed successfully

» Config / ENVs

O Requested at 6/22/16 4:33 PM » Products

O Started at 6/22/16 4:34 PM » Files
O Finished at 6/22/16 4:34 PM

= Progress

0 FINISHED youngmd/sca-stardock-build C'Rerun Debug~
Service ran successfully

» Config / ENVs

@ Requested at 6/22/16 4:33 PM » Products

O Started at 6/22/16 4:34 PM » Files
O Finished at 6/22/16 4:34 PM

® Progress

RUNNING youngmd/sca-stardock-run Debug v

Started service » Config / ENVs

O Requested at 6/22/16 4:33 PM » Files
O Started at 6/22/16 4:34 PM

® Progress Container started

Back

Figure 3. The StarDock Workflow Status page. In this example the SCA Data Service and StarDock Build Service have
finished, and the StarDock Run service is in a running state. This status page allows access to configuration, debugging,
environmental settings, and relevant system paths.

4. CONCLUSION AND FUTURE WORK

At the current time StarDock exists as a prototype, with the intention of becoming a production service within
the next year. In the meantime we intend to make several improvements to StarDock to reach that stage. To
reduce storage overhead we intend to use heuristics to identify similar containers and reduce the size and number
of images stored in the repository. We would also like to make it possible for users to pause, store, and resume
their containers. Policies must be enacted to define acceptable usage and additional computational nodes should
be added as SCA Workflow resources.

The ultimate goal of StarDock and similar services that may arise is to free astronomers from worrying about
where their data is, or what software is available to process it. Enabling researchers to use a remote system
running next to the data as easily as their own desktop or laptop computer will have a significant impact on
the astronomical community. The number of resources wasted in unnecessarily transferring data or constructing
redundant computer clusters in every department must be reduced, and StarDock is a potential path towards
achieving that goal.

APPENDIX A. EXAMPLE DOCKERFILE

This is an example of the type of DockerFile that would be constructed by the Build Service. In this example
the software packages DS9 and IRAF are installed. The header determines the base image, which in this case
is Ubuntu 16.04. The header also installs the SSH server and creates the docker account that the user will use
to login to the system. This is followed by the commands that install the requested software, then the custom
run commands entered by the user in the interface. Finally the DockerFile is appended with user access controls
that assign ownership and reset the login passwords. For this example the specified passwords have been hidden.

Proc. of SPIE Vol. 9913 991318-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



Container

Container Ouput

You can ssh to your container with following command line

ssh -X -p 32820 docker@youngmd7.sca.iu.edu

NOAO/IRAF PC-IRAF Revision 2.16.1 EXPORT Mon Oct 14 21:40:13 MST 2013
This is the EXPORT version of IRAF V2.16 supporting PC systems.

Welcome to IRAF. To list the available commands, type ? or ??. To get
detailed information about a command, type “help <command>'. To run a
command or load a package, type its name. Type “bye' to exit a
package, or “logout' to get out of the CL. Type “news' to find out
what is new in the version of the system you are using.

Visit http://iraf.net if you have questions or to report problems.
*** Checking update status... Your IRAF system is up to date
*** Initializing SAMP .... No Hub Available
The following commands or packages are currently defined:
dataio. language. obsolete. softools. vo.

dbms. lists. plot. system.
images. noao. proto. utilities.

ocl> i

Figure 4. After the container is initialized by the StarDock Run service, the workflow interface initiates a web shell for
immediate access to the container.

FROM ubuntu:16.04
MAINTAINER Michael Young <youngmd@iu.edu>

# install ssh
RUN apt-get update && apt-get install -y openssh-server

# add the docker user

RUN useradd -m docker

RUN usermod -s /bin/bash docker
RUN usermod -aG sudo docker
ENV HOME /home/docker

# set up ssh on port 22

RUN mkdir /var/run/sshd

EXPOSE 22

#### END STARDOCK HEADER

### IRAF BUILD

RUN apt-get update && apt-get install --no-install-recommends \\
--fix-missing -y wget csh

#setup directories for iraf

RUN mkdir /iraf

RUN mkdir /iraf/iraf

Proc. of SPIE Vol. 9913 991318-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss/ter msofuse.aspx



#download and extract iraf

RUN wget ftp://iraf.noao.edu/iraf/v216/PCIX/iraf.lnux.x86_64.tar.gz
RUN tar -xzf iraf.lnux.x86_64.tar.gz -C /iraf/iraf

#use csh to install iraf

RUN csh

RUN cd /iraf/iraf && ./install --system

RUN exit

#cleanup iraf install

RUN rm iraf.lnux.x86_64.tar.gz

# add iraf environmental entries to .bashrc

RUN echo "\nexport IRAFARCH=linux64\nexport IRAF=/iraf/iraf\n" >> \\
/home/docker/.bashrc

### END IRAF BUILD

### DS9 BUILD
RUN apt-get install -y saods9
### END DS9 BUILD

#### CUSTOM
RUN apt-get install -y vim emacs
### END CUSTOM

### STARDOCK FOOTER

RUN echo "docker:#****x*" | chpasswd

RUN chown -R docker:docker /home/docker
#### END STARDOCK FOOTER

REFERENCES

[1] Young, M. D., Kotulla, R., Gopu, A., and Liu, W., “Integrating the ODI-PPA scientific gateway with the
QuickReduce pipeline for on-demand processing,” in [Software and Cyberinfrastructure for Astronomy III|,
SPIE 9152, 91522U (July 2014).

[2] Gopu, A., Kotulla, R., Young, M. D., Hayashi, S., Harbeck, D., Liu, W., and Henschel, R., “Rapid Large
Scale Reprocessing of the ODI Archive using the QuickReduce Pipeline,” in [Astronomical Data Analysis
Software an Systems XXIV (ADASS XXIV)], Taylor, A. R. and Rosolowsky, E., eds., Astronomical Society
of the Pacific Conference Series 495, 53 (Sept. 2015).

[3] Gopu, A., Hayashi, S., Young, M. D., Harbeck, D. R., Boroson, T., Liu, W., Kotulla, R., Shaw, R., Henschel,
R., Rajagopal, J., Stobie, E., Knezek, P., Martin, R. P., and Archbold, K., “ODI - Portal, Pipeline, and
Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service,” in
[Software and Cyberinfrastructure for Astronomy III], SPIE 9152, 91520E (July 2014).

Proc. of SPIE Vol. 9913 991318-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/24/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



